Стол находок утерянных чисел - Левшин Владимир Артурович
— Никогда не пойте во время еды! — сказала знаменитая крыловская Ворона. — Это не принято в хорошем обществе.
— Приглашая гостей, позаботьтесь об угощении! — сказала Лиса, доедая с плошки манную кашу, которой угощала Журавля.
— И не забудьте о сервировке, — грустно добавил голодный Журавль.
— Собираясь путешествовать вместе, не берите билетов на разные виды транспорта, — посоветовали Лебедь, Рак и Щука.
— Охотясь на очковую змею, не забудьте сбить с неё очки, — напомнил Рикки-Тикки-Тави.
— И всегда носите их в футляре, — добавила Мартышка, — ведь больше они ни на что не годятся!
— Не заглядывайте в пасть крокодилу, — остерёг нас любопытный Слонёнок. — Как бы он не оставил вас с носом! И предлинным.
— Никогда не опаздывайте! — сказала Кошка, которая ходит сама по себе. — Вы рискуете прийти к шапочному разбору.

Это был своевременный совет, и мы поспешили в цирк.
В ЦИРКЕ
Что может быть лучше летнего цирка? Только зимний! Цирк любят все. Старики вспоминают здесь свою молодость. Молодые превращаются в детей. А дети, которых досрочно пытаются превратить во взрослых, забывают обо всём на свете и развлекаются, как им и положено.
На сей раз они получили возможность соединить приятное с полезным, посмотрев программу развлекательно-познавательную, к тому же с числовым уклоном. Не сомневаюсь: тут кое-кто из юных читателей недовольно поморщится. Возможно, это будет москвич. Возможно, ленинградец. Но уж наверняка не уроженец Энэмска!
Энэмские дети любят числа с рождения. И потому они страшно обрадовались, когда на манеж выбежали два клоуна в костюмах, сплошь размалёванных цифрами.
— Здравствуй, Пи! — на весь цирк закричал один.
— Здравствуй, Э! — закричал другой. — Что у тебя висит на руке?
— Не скажу! — заупрямился Пи и тут же проговорился: — Сумка.
— А что ты в ней прячешь?
— Не скажу, — опять заупрямился Пи и опять проговорился: — Корни.
— Какие корни? Еловые?
— Не угадал! — визгливо захохотал Пи.
— Дубовые?
— Опять не угадал! — снова захохотал Пи. — Квадратные и кубические.
— А что ты собираешься с ними делать?
— Извлекать!
— Откуда?
— Из сумки!
Тут он действительно извлёк из сумки чёрную табличку и очень крупно написал на ней мелом:

— Слушай, Э! — снова закричал он. — Сейчас я буду тебя экзаменовать. Вот тебе корень квадратный из ста шестидесяти девяти. Как ты будешь его извлекать?
— Надо подумать! — сказал Э и поскрёб в затылке.
— А вот и не надо! — возразил Пи. — Корни лучше всего извлекать носовым платком.
В руке у него появился большой красный платок с крупными белыми горохами, и он стёр им среднюю цифру в числе 169.
— Главное сделано, — заявил он. — Остаются пустяки. Извлекаем корень квадратный из единицы. Что получим?
— Единицу! — закричали со всех сторон.
— Правильно! — подтвердил Пи. — А теперь извлечём корень квадратный из девятки. Получим…
— Три! — опять закричали зрители.
— Цифры 1 и 3 образуют число 13. Вот вам и корень квадратный из ста шестидесяти девяти!
Публика дружно захлопала, а бедный Э, наоборот, ужасно расстроился.
— Не штука извлечь корень квадратный, — сказал он, — а ты вот попробуй кубический!
— Пожалуйста! — согласился Пи и написал на дощечке:

Потом он опять стёр платком, но уже две средние цифры, извлёк корень кубический из оставшейся единицы, затем из восьми и получил 12, что и есть корень кубический из тысячи семисот двадцати восьми.
Э после того заревел в голос и стал утирать нос платком Пи. А зрители снова захлопали, и громче всех — Главный терятель. Числовые фокусы — его страсть.
Девочке клоуны тоже понравились, и она спросила, откуда у них такие смешные имена. Я объяснил, что так в математике обозначают особые числа, которые, между прочим, тоже иррациональны. Одно из них для краткости записывают греческой буквой «пи» (?). Это число очень важное. Оно помогает нам вычислять длину окружности и приближённо равно трём целым и четырнадцати сотым (?3,14). Число «э» обозначают маленьким латинским «е», и оно приближённо равно двум целым семидесяти двум сотым (?2,72). Но девочке оно понадобится много позже, когда она познакомится с высшей математикой. А пока будет с неё и того, что обозначения «пи» и «э» ввёл великий швейцарский математик Леонард Эйлер, который долгие годы жил в России и был единомышленником великого Ломоносова.
Вслед за клоунами выступал жонглёр-мнемотехник. Он делал несколько дел сразу: танцевал на спине у бегущей лошади, жонглировал светящимися дисками и между прочим отгадывал степени натуральных чисел, задуманные зрителями.
Вы, конечно, помните, что в возведении в степень участвуют три числа. То, которое возводится в степень, называется основанием степени. То, что показывает, в какую степень возводится основание, называется показателем степени. А то, что получается в результате, просто степенью.
Так вот, отгадывая степень числа, жонглёр-мнемотехник всякий раз представлял её в виде суммы последовательных нечётных чисел, количество которых равно основанию степени. Например, отгадав число 8, он представил его в виде суммы 3+5. И так как 8 — это два в кубе(23), то и участвовало в сумме два последовательных нечётных слагаемых. Они-то и зажглись на двух дисках, которыми жонглировал мнемотехник.
Точно так отгадал он число 81, представив его в виде суммы трёх слагаемых: 25+27+29. Ведь 81 это четвёртая степень трёх (З4)! За этим числом последовало другое — 16, то есть 42, потом 125 (53)… И всякий раз число дисков менялось в зависимости от основания степени, а значит, и от числа слагаемых, на которые она разложена.
— Интересный фокус! — одобрила девочка. — Каково основание, столько и дисков.
Но я сказал, что это не фокус, а правило. И я могу его доказать. Фокус же состоит в том, что жонглёр отгадывал задуманные степени, да ещё стоя на бегущей лошади. И вот этого я нипочём бы не смог. Даже сидя верхом на стуле.
Жонглёра сменили воздушные гимнасты. Они тоже делали несколько дел сразу: кувыркались под куполом и заодно показывали действия с обыкновенными дробями. Это было красивое зрелище. Под звуки «Лунного вальса» разноцветные прожекторы выхватывали из темноты стройные фигуры в светящихся костюмах, на которых всякий раз вспыхивали другие числа. Воздушные дроби преображались на глазах: делились, умножались, сокращались, менялись числителями и знаменателями.
Покончив с обыкновенными дробями, гимнасты перешли к десятичным, и в воздухе замелькали нули, запятые, знаки приближения. Завершился номер, как водится, самым эффектным трюком: периодической дробью.

Музыка смолкла. В темноте вспыхнуло числовое выражение «4:39 = 0, ». Несколько мгновений оно висело в воздухе неподвижно, затем к запятой одна за другой пристроились цифры 1, 0, 2, 5, 6, 4. Секунда передышки — и к этим шести цифрам снова пристроились те же: 102564. И ещё раз. И ещё раз. Теперь над манежем висело длиннющее число 0,102564102564102564102564… Но вот оно погасло, и вместо него вспыхнули только первые шесть цифр, стоящие после запятой: это шестеро гимнастов выстроились на одной широкой трапеции. Грянула барабанная дробь, и трапеция поплыла по кругу. Сперва медленно, потом быстрей, быстрей. Вместе с ней закружились, замелькали цифры 102564, образуя одно нескончаемое число с повторяющимся числовым периодом. Наконец движение стало таким быстрым, что уже ничего не разобрать. Всё смешалось, слилось в одно светящееся кольцо…
И вдруг оно погасло. На несколько секунд цирк погрузился в полную тьму. А когда его залило светом, гимнасты были уже внизу, на манеже…
Похожие книги на "Стол находок утерянных чисел", Левшин Владимир Артурович
Левшин Владимир Артурович читать все книги автора по порядку
Левшин Владимир Артурович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.