В поисках похищенной марки - Левшин Владимир Артурович
Он схватил на руки Пончика, Пощекотал его под подбородком — тот несколько раз тявкнул.
— Объявляю заседание открытым, — невозмутимо провозгласил Нулик. — Чур, первый вопрос мой. Прошу разъяснить, могут ли рыбы смеяться и что смешного в геометрии? Сева удивлённо поднял брови.
— Мне кажется, вопрос уважаемого президента к делу не относится.
— То есть как это не относится? — возмутился Нулик. — Магистр пишет, что смеялся каким-то сардиническим и даже геометрическим смехом. Но разве сардинки умеют смеяться?
Не знаю, как сардинки, а мы посмеялись вволю. Президент, как водится, поначалу обиделся, но потом не выдержал и стал хохотать заодно со всеми.
— Да будет тебе известно, — выговорил наконец Сева, — что сардинического смеха в природе не существует. Есть сардонический.
Нулик пожал плечами.
— Сардонический? Это уж совсем непонятно.
— Почитай энциклопедию — поймёшь! — посоветовала Таня.
— Сама читай! — огрызнулся Нулик.
— А я уж прочитала.
— И что же вычитала?
— А то, что сардоническим называется смех язвительный, насмешливый, горький. И связано это с ядовитой травой сардонией. Если её поесть, лицо начинает дёргаться, кривиться…
— Так? — спросил президент и принялся корчить какие-то немыслимые рожи.
Сева безнадёжно махнул рукой.
— Ну, выпустила джинна из бутылки! Теперь конца не жди…
Действительно, президент так обрадовался возможности подурачиться, что, казалось, начисто позабыл о своём высоком сане и о научно-исследовательских интересах клуба. Но Олег сумел-таки призвать его к порядку.
— Между прочим, — сказал он, — Магистр не так уж сильно ошибся, когда назвал смех сардиническим. Ведь трава сардония растёт на острове Сардиния… От него, кстати, и получила название та вкусная рыбка, которая ловится в тех местах.
— Вот видите! — торжествовал Нулик. — Я всегда говорил, что Магистр — умница. У него даже и ошибки умные. Наверное, и «геометрический смех» не такая уж глупость.
— К сожалению, не могу с тобой согласиться, — сказал Олег. — Магистр, конечно же, имел в виду гомерический смех, который никакого отношения к геометрии не имеет.
— А к чему, позвольте узнать, он имеет отношение?
— К Гомеру. Великому поэту Древней Эллады. Автору бессмертных поэм «Илиада» и «Одиссея».
Нулик досадливо топнул ножкой.
— Но при чём же тут гомерический смех?
— А при том, что в «Илиаде» есть одна сцена, где живущие на горе Олимп боги громоподобно хохочут над своим собратом Гефе?стом.
— А чем он их насмешил?
— Бог огня и покровитель кузнецов Гефест был хромой и некрасивый. Наблюдая, как он хлопочет, готовя для них угощение, боги хохотали над его неуклюжими движениями…
— "Смех несказа?нный воздвигли блаженные жители неба, видя, как с кубком Гефест по чертогу вокруг суетится", — торжественно продекламировал Сева.

— Садитесь. Ставлю вам пять, — изрёк Олег профессорским тоном. — Надеюсь, теперь понятно, какой смех называют гомерическим…
— Моя мама говорит, что над физическими недостатками смеются только нравственные уроды, — сказал Нулик непривычно жёстко.
От неожиданности Сева даже присвистнул.
— Это ты верно говоришь! Олимпийские боги и впрямь особой добротой не отличались. Это ведь они приковали к скале Промете?я за то, что он похитил божественный огонь и отдал его людям…
— А что они сделали с Сизи?фом? — напомнила Таня. — Он хотел избавить людей от смерти, а его за это отправили в ад и заставили там вечно вкатывать на гору огромный камень.
— Стоп! — вмешался я. — На этот раз достаточно. Олимпийские боги совершили столько жестокостей, что перечисление их отняло бы слишком много времени. Займёмся лучше Единичкой. Как удалось ей так быстро перемножить в уме два многозначных числа, а потом, прибавив к произведению единицу, извлечь из этого квадратный корень?
— По-моему, ничего она не перемножала и не извлекала, — сказала Таня. — Просто применила какой-то способ…
Нулик стукнул себя кулаком в грудь.
— Спроси об этом у меня.
— Вот чудо! — всполошились все. — Ты знаешь Единичкин способ?
— Знать-то знаю, но… — Нулик почесал в затылке.
— Что ещё?
— Но применим ли он во всех случаях жизни? Вот вопрос…
— Об этом после, а пока давай рассказывай.
Нулик откашлялся
— Леди и джентльмены, прошу внимания. Возьмём два последовательных нечётных числа: например, 15 и 17. Насколько я понимаю в арифметике, произведение их равно 255. Так? Теперь прибавим единицу. Что мы имеем? 256. Извлечём из 256 квадратный корень. Это всегда было и будет 16. А теперь сравните-ка ответ с заданными числами: 15 и 17. Что вы замечаете? Вы замечаете, что 16 есть среднее арифметическое между 15 и 17, то есть число, которое заключено между ними.
— Гениально! Я бы до такого нипочём не додумался! — уверял Сева.
Нулик сиял как медный грош, но скромность и преданность научным интересам заставили его снова обратиться к слабой стороне своего научного открытия.
— Хотел бы я знать, годится ли способ Единички для десяти — или двадцатизначных чисел?
— Так это же легко проверить, — сказал Олег.
— Что ты! — испугался Нулик. — Перемножать в уме такие огромные числа!
— Зачем перемножать? Просто решим задачу в общем виде. Обозначим первое из двух нечётных чисел буквой a. Тогда второе число будет a+2 — ведь каждое следующее нечётное число больше предыдущего на 2. Теперь перемножим эти числа. Получим a(a+2). Затем прибавим к этому 1. Получим a(a+2)+1. И. наконец, извлечём из всего этого квадратный корень:

Вот и все, — закончил Олег. — Вернее, почти все…
— Очень даже почти! — подтвердил Нулик.
— Нет, не очень! Ведь подкоренное выражение a(a+2)+1 можно преобразовать так: a2+2a+1. А этот трехчлен не что иное, как полный квадрат суммы, то есть (a+1)2. А уж извлечь квадратный корень из квадрата проще пареной репы:

Вот теперь совсем все!
— Теперь совсем! — согласился Нулик. — Потому что a+1 это и есть число, стоящее между a и a+2, то есть их среднее арифметическое. Стало быть, способ годится для всех чисел.
На радостях президент прошёлся колесом по комнате, потом схватил на руки Пончика и принялся танцевать с ним вальс. Он веселился так бурно, что пришлось объявить антракт.
— А в антракте полагается идти в буфет! — заявил Нулик и с азартом набросился на бутерброды, приготовленные Таней.
Пончик, который отнюдь не собирался питаться корнями квадратными, последовал его примеру…
После антракта перешли к задаче с футболистами.
— Итак, — провозгласил президент, — Магистр, Единичка и двое полицейских мчатся на аэродром. По дороге их задерживает овечий табун. И вот…
Сева насмешливо хмыкнул:
— Если увидишь на клетке льва надпись «буйвол», не верь глазам своим. Табун бывает только лошадиный, а про овец говорят: «овечья отара».
— Ладно, — милостиво согласился Нулик, — гитара так гитара.
— Да не гитара, а отара…
— Если ты будешь меня всё время перебивать, мы никогда не кончим. Так вот, наши путешественники прибыли наконец на аэродром. И опять неудача! Вертолёт уже поднимается в воздух, а каких он забрал футболистов, остаётся неизвестным.
— Зато известно, — сказала Таня, — что этот вертолёт, как и в первый свой рейс, забрал футболистов в пять раз больше, чем число футбольных команд в Терранигугу. Значит, за оба рейса он забрал игроков в десять раз больше.
— Подумаешь, новость! — отмахнулся президент. — Ты мне скажи лучше, набралась ли за оба рейса хоть одна полностью укомплектованная команда?
— Этого тебе никто не скажет, — возразил Сева. — Зато мы хорошо знаем, что после обоих рейсов на стадион отправился ещё один игрок.
Похожие книги на "В поисках похищенной марки", Левшин Владимир Артурович
Левшин Владимир Артурович читать все книги автора по порядку
Левшин Владимир Артурович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.