Игра разума. Как Клод Шеннон изобрел информационный век - Сони Джимми
Ознакомительная версия. Доступно 16 страниц из 76
И этого было бы вполне достаточно. Но был сделан еще один шаг, который кому-то мог показаться чудом или чем-то непостижимым. Ниже границ предела скорости канала, какой бы ни был замысел, мы можем сделать сообщения настолько точными, насколько пожелаем, идеально свободными от шума. Это было самое далеко идущее открытие Шеннона: то, что Фано называл «неизвестным, немыслимым», пока Шеннон не решил эту проблему.
До Шеннона сформировалось укоренившееся убеждение в том, что шум – это естественная помеха. Способы сглаживания шума принципиально не менялись с тех пор, как Уайлдмен Уайтхаус сжег огромный морской кабель. Передача информации, подсказывал здравый смысл, напоминала передачу электроэнергии. Лучшим решением тогда был затратный и ненадежный способ действовать грубой силой, а именно «перекрикивать» помехи, подавая более громкий сигнал.
Способ Шеннона достичь идеальной точности передачи был чем-то радикально новым [8]. По мнению профессора инженерного дела, Джеймса Мэсси, именно этот потенциал, помимо всего прочего, делал теорию Шеннона «коперниковской»: в том смысле, что переворачивал очевидное с ног на голову, кардинально и самым продуктивным образом меняя наше понимание мира. Точно так же, как Солнце «очевидно» вращалось вокруг Земли, лучшим решением проблемы с шумом «очевидно» было иметь дело с физическими каналами связи, с их мощью и силой сигнала. Шеннон предлагал настораживающую смену акцентов: игнорировать физический канал, мы можем преодолеть шум, управляя нашими сообщениями. Решение проблемы шума заключается не в том, насколько громко мы говорим, а в том, как мы говорим то, что мы говорим.
Как неуверенные операторы трансатлантической телеграфной связи пытались справиться с нарушением сигнала? Они просто повторяли друг другу: «Повторите, пожалуйста», «посылайте медленнее», «правильно, правильно». На самом деле Шеннон показал, что замученные телеграфисты в Ирландии и Ньюфаундленде ухватили суть, они фактически решили проблему, даже не подозревая об этом. Если бы они смогли прочитать статью Шеннона, то, вероятно, сказали бы: «Пожалуйста, добавьте избыточности».
В определенном смысле это было достаточно очевидно: сказать одну и ту же вещь дважды в шумной комнате – это, в некотором роде, добавление избыточности, если мы подразумеваем, что одна и та же ошибка вряд ли повторится в одном и том же месте два раза подряд. Для Шеннона все было гораздо глубже. Наша лингвистическая предсказуемость, наша врожденная неспособность максимизировать информацию – это фактически наша лучшая защита от ошибок. Несколькими страницами ранее вы прочитали о том, что структура нашего языка лишает нас полной свободы выбирать «следующую букву и следующий ананас». Как только вы дошли до слова «ананас» – на самом деле, как только вы дошли до буквы «а», – вы уже понимали, что что-то пошло не так. Вы обнаружили (и, вероятно, исправили) ошибку. Вы сделали это потому, что у вас есть внутреннее понимание структуры языка. И это внутреннее знание подсказало вам, что вероятность того, что слово «ананас» имеет смысл в этом предложении и абзаце, крайне низка. Избыточность нашего языка корректирует ошибки за нас. С другой стороны, представьте, насколько сложнее было бы найти ошибку в языке «XFOML», в котором каждая буква одинаково вероятна [9].
Для Шеннона ключ опять же заключался в коде. Он продемонстрировал, что мы должны уметь писать коды, в которых избыточность действует как щит, коды, в которых ни один бит не является неустранимым, и любой бит может без всякого вреда для сообщения быть поглощен шумом. Мы снова хотим отправить сообщение, составленное из букв от А до D, но в этот раз нам важнее не сжимать сообщение, а чтобы оно надежно прошло по шумному каналу связи. И снова мы начнем с самого простого кода:
А = 00
В = 01
С= 10
D = 11
Одна из самых худших вещей, которые может сделать шум в момент помех, включения посторонних звуков или физического повреждения канала связи – это исказить биты. Там, где отправитель произносит «1», получатель слышит «0», или наоборот. Так что если бы мы использовали этот код, то ошибка для одного-единственного бита могла бы быть фатальной. Если бы всего один из битов, представляющих букву С, поменял бы свое свойство, буква С потерялась бы в канале связи: она возникла бы в виде буквы В или D, запутав получателя. Достаточно всего лишь двух таких замен, чтобы превратить «DAD» в «САВ».
Но мы можем решить эту проблему – точно так же, как человеческие языки интуитивно, автоматически решают подобную проблему, – добавив биты. Мы можем использовать вот такой код:
А = 00000
В = 00111
С = 11100
D = 11011
Теперь любая буква могла бы выдержать повреждение любого бита и все равно оставаться именно этой буквой и никакой другой. При наличии двух ошибок ситуация становится более запутанной: 00011 может быть либо буквой В с одним замененным битом, либо А с двумя замененными битами. Но чтобы превратить одну букву в другую, требуются три полноценные ошибки. Наш новый код противостоит шуму так, как не противостоял ему наш первый код, и делает это более эффективно, чем простое повторение слова. Нам не нужно было менять ни единой вещи в том, что касается средства связи: никаких перекрикиваний в переполненной комнате, никакого монтажа индукционных катушек. Нужно лишь посылать правильные сигналы.
Пока мы соблюдаем скоростной предел канала связи, у нас нет ограничений в точности передачи нашего сообщения, нет ограничений в количестве шума, сквозь который мы можем пробиться. Да, преодоление большего числа ошибок или добавление большего числа символов потребует более сложных
Шеннон был прав: решение есть всегда.
И это решение – цифровое.
кодов. Так же как и сочетание преимуществ кодов, которые сжимают сообщение, и кодов, которые защищают от ошибок. Для этого нам потребуется максимально эффективно сократить сообщения в битах, а потом добавить избыточности, которая обеспечит его точность. Шифрование и дешифровка все равно взыщут свою цену за счет потраченных усилий и времени. Но Шеннон был прав: решение есть всегда. И это решение – цифровое. На этом Шеннон завершил свое исследование, начавшееся с магистерской работы и переключателей одиннадцатью годами ранее. 1 и 0 закрепляли целостность его логики. Знаки 1 и 0 символизировали фундаментальную природу информации, равный выбор из двух вариантов. И теперь было очевидно, что любое сообщение можно отправить безукоризненно – мы можем общаться с помощью любого вида связи, любой сложности и на любом расстоянии – при условии, что наши сообщения переводятся в 1 и 0. Логика преобразуется в цифру. Информация переводится в цифру.
А потому каждое сообщение родственно всем другим сообщениям. «До того момента все считали, что связь задействовали, чтобы найти способы передачи письменного языка, устной речи, изображений, видео и всего разнообразия других видов сообщений – и что все они требовали разных способов передачи, – говорил коллега Шеннона Роберт Галлагер. – Клод сказал: “Нет, вы можете перевести все это в двоичные символы. А потом вы можете найти способы передачи этих двоичных символов”. Вы можете закодировать любое сообщение в виде потока битов, и вам совсем необязательно знать, куда оно отправится. Вы можете передать любой поток битов эффективно и надежно, не интересуясь, откуда он пришел. Как сказал специалист в области теории информации, Дэйв Форни, «биты – это универсальный интерфейс».
Со временем его мысли, представленные на семидесяти семи страницах в «Техническом журнале “Лабораторий Белла”, дадут толчок рождению цифрового мира. Появятся спутники, общающиеся с землей посредством бинарного кода, диски, проигрывающие музыку, несмотря на пятна и царапины (потому что хранилище – это просто другой канал, а царапина – это просто другой шум).
Ознакомительная версия. Доступно 16 страниц из 76
Похожие книги на "Игра разума. Как Клод Шеннон изобрел информационный век", Сони Джимми
Сони Джимми читать все книги автора по порядку
Сони Джимми - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.