Под знаменем марксизма (СИ) - Нигматулин Марат "Московский школьник"
В главе 3 мы фокусируемся на наших контрольных данных, которые относительно консервативны и обеспечивают промежуточные уровни неравенства в диапазоне вариантов, которые мы рассматриваем. Следует подчеркнуть, что во всех возможных вариантах число налогоплательщиков с очень высоким уровнем дохода намного выше по данным налогообложения, чем в данных самоотчетных опросов, так что наши исправленные оценки неравенства (и, в частности, наши исправленные 10% и 1% долей дохода) намного больше, чем предполагают необработанные данные обследований. Понятно, что имеющиеся в России таблицы налогов подоходного налога несовершенны, что и очевидно для такой страны. Публикация улучшенных таблиц позволила бы построить более точные и подробные оценки неравенства доходов в России, но российское правительство вероятнее всего на это никогда не пойдет.
Насколько нам известно, впервые в России используются статистические данные о налогах на прибыль в России (которые доступны на веб-сайте российских налоговых органов). Некоторые исследователи использовали образец деклараций о доходах на индивидуальном уровне из города Москвы, который был датирован 2004 годом. В выборке содержится гораздо больше информации, чем в таблицах, которые мы используем в этой статье, но, к сожалению, данные не были общегосударственными и охватывали лишь несколько лет. Что обнадеживает для наших целей, так это то, что данные в Москве привели к количественным результатам, которые в целом сходны с тем, что мы находим здесь: коэффициент Джини подскочил с 0,3-0,4 в данных самоотчетных опросах до более 0,6 с использованием данных утечки налогов и верхняя 10%-я доля дохода переместилась с 30% до более чем 50% от общего дохода. Все данные о таблицах национального подоходного налога и итоговые оценки приведены в онлайн-приложении. Что касается данных обследований домашних хозяйств, мы используем данные обследований RLMS (за период 1994-2015 гг.) и данные обследования HBS за предыдущие годы (данные HBS доступны в течение периода 1989-2015 гг., сопоставимые советские исследования проводились в 1980, 1985 и 1988 гг., и мы также используем их). Оба обследования (RLMS и HBS) имеют хорошо известные преимущества и жуткие недостатки. Мы предполагаем, что они обеспечивают приемлемое описание распределения доходов ниже 90-го процентиля (p0 = 0,9). Для использования таблиц подоходного налога, доступных в течение периода 2008-2015 годов, мы применяем обобщенные методы интерполяции Парето (Blanchet, Fournier and Piketty 2017) и кусочно-линейные поправочные коэффициенты f (p) выше p0 до процентилей, предоставляемых налоговых данных, чтобы исправить верхнюю часть распределения (аналогично методу, используемому Piketty-Yang-Zucman 2017, и описана в Alvaredo et al., 2016). Получающееся в результате увеличение коэффициентов Pareto верхнего дециля используется для корректировки оценочных размеров Парето в период 1980-2007 годов. По сути, это приводит к небольшим восходящим корректировкам неравенства в необработанном исследовании в период 1980-1990 годов и постепенному увеличению корректировок вверх после 1990 года. Наконец, мы используем табличные данные из советских доходов, которые уже велись и использовались в течение 1928, 1934, 1956, 1959 гг. и регулярно до 1989 г. другими исследователями (см., в частности, Бергсон, 1942, 1944, и основные работы Аткинсона и Миклуота 1992 г., которые предоставляют обширную коллекцию неплохих обзоров, где вы найдете данные для России и стран Восточной Европы при коммунизме, см. также Флемминг и Миклуарт 2000, опрос).
Чтобы обеспечить сравнение с досоветским неравенством, мы также используем таблицу распределения доходов, которая была оценена царскими налоговыми органами на 1905 год в рамках подготовки к возможному введению подоходного налога (который, разумеется, не был введен, поэтому это нельзя сравнивать с фактическими данными). Как мы объясняем в главе 3, точность полученной оценки не должна считаться особенно большой, хотя порядки величины кажутся нам правдоподобными.
2.2.3. Данные распределения богатства.
Мы также предоставляем данные распределения богатства для России в период 1995-2015 годов (которую мы затем используем для распределения освобожденных от налогов доходов от капитала). Чтобы построить эти оценки, мы используем данные Forbes и применяем обобщенные методы интерполяции Парето. Здесь есть два замечания.
Во-первых, как мы объясняем далее в главе 2, когда мы приводим полученные оценки, существует существенная неопределенность относительно точного уровня концентрации богатства в России. Количество российских миллиардеров, зарегистрированных в международных рейтингах, таких как список Forbes, чрезвычайно велико по международным стандартам. По данным Forbes, общее богатство миллиардеров было очень маленьким в России в 1990-х годах, значительно увеличилось в начале 2000-х годов и стабилизировалось примерно на 25-40% национального дохода в период с 2005 по 2015 год (с большими вариациями из-за международного кризиса и страшного падения российского фондового рынка после 2008 года). Это намного больше, чем соответствующие цифры в западных странах: общее богатство миллиардеров составляет от 5% до 15% национального дохода в Соединенных Штатах, Германии и Франции в 2005-2015 годах по данным Forbes, несмотря на то, что средний доход и среднее богатство намного выше, чем в России. Это наводит на мысль, что концентрация богатства на самой верхушке в России значительно выше, чем в других странах, что, несомненно, связано с коррумпированностью властей страны. Проблема, однако, в том, что данные миллиардеры – это очень маленькие группы людей (около 100 миллиардеров, которые являются гражданами России в конце указанного периода, большинство из которых являются резидентами России по версии Forbes). Нужно сделать достаточно смелые предположения, чтобы перейти оттуда к оценкам топ-10% или даже 1% сверху и 0,1% от распределения. В приложении мы представляем ряд альтернативных данных, основанных на явных предположениях и обобщенных методах интерполяции Парето. К сожалению, существует значительная неопределенность в отношении этих оценок. Мы знаем, что Россия – страна с большим неравенством в богатстве, но мы не знаем точной степени концентрации богатства (например, мы не можем обеспечить точное сравнение с США). Мы очень надеемся, что новые источники данных и методы будут разработаны в будущем, чтобы улучшить эти оценки. Мы вернемся к этому обсуждению, когда представим наши итоговые данные в 4.14.
Несмотря на то, что существует значительная неопределенность в отношении точной величины концентрации богатства, это оказывает относительно ограниченное влияние на наши окончательные оценки неравенства в доходах. Как описано выше, мы используем оценки неравенства богатства для распределения освобожденных от налогов доходов от капитала (как правило, нераспределенной прибыли корпораций и вмененной арендной платы), предполагая, что совместное распределение финансовых доходов и не фискальных доходов (т.е. Gumbel copula с параметром Θ = 3.15.). Мы показываем, что использование ряда альтернативных вариантов распределения богатства мало влияет на доли конечного дохода, в первую очередь потому, что верхние поступления в бюджетные доходы уже очень велики (предполагая, что они уже включают значительную часть высоких доходов от экономического капитала и доходы от предпринимательской деятельности), а затем потому, что нефискальный доход не является очень большим компонентом дохода, а все данные неравенства богатства характеризуются большой концентрацией.
Похожие книги на "Под знаменем марксизма (СИ)", Нигматулин Марат "Московский школьник"
Нигматулин Марат "Московский школьник" читать все книги автора по порядку
Нигматулин Марат "Московский школьник" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.