Стрелы Времени (ЛП) - Иган Грег
И все же самые удивительные следствия проистекают из требования конечности Ортогональной Вселенной по всем направления 4-пространства, которое приводит к тому, что история всей Вселенной рано или поздно возвращается к своему начальному состоянию – вне зависимости от того, как именно выбирается это состояние и какое из направлений принимается за ось «времени».
Дополнительные материалы к роману можно найти на сайте www.gregegan.net.
Приложение 1. Единицы измерения
Приложение 2. Свет и цвета
Названия цветов переведены таким образом, чтобы длина волны последовательно уменьшалась при переходе от «красного» к «фиолетовому». В Ортогональной Вселенной эта последовательность сопровождается уменьшением временной частоты света. В нашей Вселенной действует обратная зависимость: чем меньше длина волны, тем больше ее частота.
Минимальная длина световой волны λmin составляет около 231 пикколомизера; такой свет движется с бесконечной скоростью и соответствует «ультрафиолетовому пределу». Максимально возможная временная частота света νmax примерно равно 49 генеросоциклам на одну паузу; это «инфракрасный предел», которому соответствует неподвижный свет.
Все оттенки света порождаются одной и той же структурой волновых фронтов, по-разному ориентированных в 4-пространстве.
На приведенной диаграмме AB обозначает расстояние между фронтами волны в 4‑пространстве; это расстояние постоянно и не зависит от цвета. AD – это длина световой волны (расстояние между фронтами в данный момент времени), а BE – ее период (интервал времени между фронтами в данной точке пространства).
Прямоугольные треугольники ACB и ABD подобны, поскольку углы при вершине A равны. Отсюда следует, что AC/AB = AB/AD, или:
AC = (AB)2/AD
Кроме того, прямоугольные треугольники ACB и EAB также подобны, так как имеют общий угол при вершине B. Следовательно, BC/AB = AB/BE, или
BC = (AB)2/BE
Применив к прямоугольному треугольнику ACB теорему Пифагора, имеем:
(AC)2 + (BC)2 = (AB)2
Подставим сюда два предыдущих выражения:
(AB)4/(AD)2 + (AB)4/(BE)2 = (AB)2
Поделив обе части уравнения на (AB)4, получаем:
1/(AD)2 + 1/(BE)2 = 1/(AB)2
Поскольку AD – это длина световой волны, то 1/AD – это ее пространственная частота κ, или количество волн, приходящихся на единицу длины. Поскольку BE – это период световой волны, то 1/BE – это временная частота ν, количество циклов, приходящихся на единицу времени. А поскольку AB – это фиксированное расстояние между волновыми фронтами, то 1/AB выражает максимальную частоту света νmax, то есть ту частоту, которую мы получаем в инфракрасном пределе, когда период волны равен AB.
Таким образом, мы доказали, что сумма квадратов пространственной и временной частот является постоянной величиной:
κ2 + ν2 = νmax2
При выводе мы опирались на предположение, что время и пространство выражаются в одних и тех же единицах. В приведенной выше таблице мы однако же используем традиционные единицы, которые существовали до открытия вращательной физики Ялды. Данные, собранные Ялдой на горе Бесподобная, показали, что если временной интервал отождествляется с расстоянием, пройденным голубым светом за соответствующее время, то соотношение между пространственной и временной частотами принимает простую форму, упомянутую выше. Таким образом, множитель, соответствующий переходу от традиционных единиц к «геометрическим», равен скорости голубого света ublue, и, следовательно,
(ublue × κ2) + ν2 = νmax2
Значения в таблице выражены в различных единицах измерения, которые были выбраны таким образом, чтобы все количественные показатели состояли из двух или трех цифр. Если мы добавим множитель для согласования единиц измерения, то соотношение примет вид:
(78/144 × κ2) + ν2 = νmax2
Теперь скорость света определенного оттенка можно выразить простым отношением расстояния, пройденного светом, к длине соответствующего интервала времени. Импульсы света на первой диаграмме проходят расстояние AC за время BC, поэтому u = AC/BC. Воспользовавшись выведенными соотношениями между AC, BC и пространственной частотой κ, а также BC, BE и временной частотой ν, мы получим:
u = κ/ν
С традиционными единицами измерения эту формулу опять-таки можно использовать только после добавления соответствующего переводного коэффициента:
u = (ublue × κ)/ν
После подстановки частот из приведенной выше таблицы, последнее выражение принимает вид:
u = (78/144 × κ)/ν
Скорость, о которой до сих пор шла речь, – это безразмерная величина, зависящая от наклона линии, описывающей историю светового импульса на пространственно-временной диаграмме. (На наших диаграммах временная ось вертикальна, а пространственная горизонтальна, поэтому скорость фактически обратна наклону). Домножив безразмерную скорость на 78, то есть скорость голубого света, выраженную в пропастях на паузу, мы получаем значения в традиционных единицах, приведенных в таблице.
Приложение 3. Умножение и деление векторов
Путешественники Бесподобной придумали способ умножения и деления четырехмерных векторов, позволяющий построить на их основе полноценную числовую систему, похожую на более знакомые нам вещественные и комплексные числа. В нашей культуре эта система носит название кватернионов и была открыта Уильямом Гамильтоном в 1843 г. Подобно тому, как вещественные числа образуют одномерную прямую, а комплексные числа – двумерную плоскость, кватернионы формируют четырехмерное пространство, что делает их идеальной числовой системой для описания геометрии в четырех измерениях. В нашей Вселенной полноценное использование кватернионов невозможно в силу принципиального отличия между временем и пространством, однако в Ортогональной Вселенной геометрия 4-пространства и арифметика кватернионов органично сочетаются друг с другом.
В том варианте, который применяется жителями Бесподобной, главные направления четырехмерного пространства-времени называются Восток, Север, Верх и Будущее, а соответствующие им противоположные направления – Запад, Юг, Низ и Прошлое. Будущее играет роль единицы: при умножении или делении произвольного вектора на Будущее он не меняется. При возведении в квадрат любого из трех других главных направлений – Восток, Север и Верх – всегда получается Прошлое, или минус единица, поэтому в данной числовой системе существуют три независимых квадратных корня из минус единицы; для сравнения, в системе комплексных чисел такой корень всего один – это i. (Разумеется, что при возведении в квадрат противоположных направлений – Запад, Юг и Низ – также получается Прошлое по аналогии с тем, как в системе комплексных чисел квадрат –i также равен –1, однако эти направления не считаются независимыми квадратными корнями).
Похожие книги на "Стрелы Времени (ЛП)", Иган Грег
Иган Грег читать все книги автора по порядку
Иган Грег - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.