Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич
Смешная третья опция для современного проектировщика нейронных сетей (помимо GPU/TPU и CPU, обычных центральных процессоров, которые, кстати сказать, сегодня тоже активно развиваются в направлении расширения наборов инструкций за счёт быстрых векторных операций) — это использование FPGA — устройств, относящихся к категории программируемых логических интегральных схем (ПЛИС). FPGA в наши дни часто используют для прототипирования ASIC: удобно сперва испытать ту или иную архитектуру микросхемы, прежде чем отправить её в серийное производство.
Если вас интересует более подробный анализ состояния дел в мире оборудования, предназначенного для задач глубокого обучения, то рекомендую регулярно дополняемый обзор [1562] от Григория Сапунова, в котором можно найти сведения о последних проектах в чудесном мире CPU, GPU и TPU, ПЛИС и ASIC.
5.3.4 Импульсные нейронные сети
В целом поступательный рост производительности цифровых вычислительных устройств в совокупности с созданием специализированных процессоров, способных более эффективно выполнять алгоритмы, используемые при обучении и выполнении нейронных сетей, оказали чрезвычайно мощное воздействие на прогресс в области нейросетевых технологий. Нередко приходится слышать, что это стало чуть ли не единственным фактором, определившим прогресс в данной области. Такая точка зрения, безусловно, грубо упрощает информацию о состоянии дел в отрасли и обесценивает усилия разработчиков новых моделей и алгоритмов. Но в то же время глупо было бы отрицать, что некоторые модели и методы просто не могут эффективно применяться в отсутствие соответствующих вычислительных ресурсов. Развитие моделей связано с организацией множества вычислительных экспериментов, для постановки которых необходим доступ к подходящему оборудованию.
Иногда устройства, предназначенные для ускорения работы нейронных сетей, называются также ИИ-ускорителями (AI accelerators) или NPU (Neural Processing Unit, Нейронный процессор). В их число обычно включают также и нейроморфные процессоры, которые мы коротко упомянули в подглаве 4.4.6. Современные нейроморфные системы можно условно разделить на два класса: системы, целью которых является моделирование процессов, происходящих в нервной ткани живых существ, и системы, ставящие своей целью решение прикладных задач искусственного интеллекта на основе импульсных нейронных сетей (spiking neural networks, SNN). Для удобства мы будем называть первые нейроморфными системами типа I, а вторые — нейроморфными системами типа II.
Термин «импульсные нейронные сети» появился с лёгкой руки профессора Вольфганга Маасса, который в своей статье 1997 г. предложил разделить нейронные сети на три поколения. К первому он относил нейронные сети на основе нейронов с пороговой функцией активации, ко второму — сети на основе нейронов с непрерывными функциями активации (сигмоидальными, полиномиальными и т. д.), а к третьему — сети, которые в качестве вычислительных единиц используют так называемые импульсные нейроны [1563].
Импульсные нейроны, в отличие от нейронов обычного перцептрона, срабатывают не на каждом из циклов распространения сигнала, а только тогда, когда их мембранный потенциал (т. е. разница в электрическом заряде внутренней и внешней поверхностей клеточной оболочки) достигает определённого значения. Когда нейрон срабатывает, он генерирует сигнал, который передаётся другим нейронам, которые, в свою очередь, увеличивают или уменьшают свои мембранные потенциалы в соответствии с этим сигналом. Несложно убедиться, что источником вдохновения для импульсной модели нейрона послужили работы Луи Лапика, Ходжкина, Хаксли и других нейрофизиологов, занимавшихся изучением распространения электрических сигналов в нервной ткани. Системы уравнений, описывающие накопление потенциала, его утечки, срабатывание нейрона и так далее, могут различаться в различных импульсных моделях. Обычно выбор конкретной модели зависит от области применения нейроморфной системы, именно поэтому модели, лежащие в основах систем типа I, тяготеют к большей биологической достоверности; модели же, лежащие в основе систем типа II, обычно выбираются таким образом, чтобы обеспечить снижение вычислительных затрат и большее удобство применения в используемом типе оборудования. Среди преимуществ систем типа II по сравнению с тензорными процессорами можно назвать их крайне низкий уровень энергопотребления и тепловыделения.
Первые сети третьего поколения (далее — импульсные сети) появились задолго до работ Маасса. Их история не менее интересна, чем история «конвенциональных» искусственных нейронных сетей. У истоков этого направления стоял биофизик Отто Шмитт, известный в качестве автора термина «биомиметика». Старший брат Отто, Фрэнсис, был биологом и изучал в MIT «молекулярную организацию клеток и тканей с особым акцентом на нервные волокна». Отто выбрал близкую тему для исследований в аспирантуре. Он использовал свои знания в области электротехники, стремясь создать искусственные конструкции, способные имитировать распространение импульсов по нервным волокнам. В результате в 1934 г. увидел свет так называемый триггер Шмитта, реализованный на базе электровакуумных триодов. В 1937 г. Шмитт описал его в диссертации под названием «термионный триггер» [1564]. Как и для Ходжкина и Хаксли, источником вдохновения для Шмитта стала нервная система кальмара. В 1940 г. собственную электрическую схему для моделирования работы нерва создал французский исследователь Филипп Фабр, известный в наши дни как изобретатель электроглоттографии [1565]. В своей работе Фабр ссылается на Лапика, а также на ряд исследователей, изучавших нервную проводимость в 1920–1930‑е гг. [1566], [1567] Конечно, все эти ранние работы (как и ряд более поздних) не ставили перед собой задачу создания вычислительных устройств. Действующие электрические модели нейрона в те годы создавались главным образом для исследований в области физиологии и медицины [1568]. Позже, в 1960 г., на заре эпохи интегральных схем, американский инженер Хьюитт Крейн из Стэнфордского исследовательского института предложил концепцию нейристора [neuristor], способного заменить собой все логические элементы цифровой схемы. Впрочем, признавая, что сам по себе нейристор пока что не создан, автор в качестве варианта предлагал ссылаться на его модель как на «эвристор» [heuristor], чтобы приберечь название «нейристор» до того момента, когда такие устройства будут созданы [1569]. Появление таких устройств не заставило себя ждать. Пионерскими работами в этой области стали конструкции Коута и Нагумо.
В 1960–1970-е гг. было предложено множество различных схем реализации нейронных систем, ряд из которых можно отнести к импульсным сетям. Среди интересных проектов в этой области, осуществлявшихся в то время, стоит упомянуть исследования, выполненные в рамках американо-польского научного сотрудничества. Обширная программа совместных исследований финансировалась в начале 1970-х гг. Национальным научным фондом США с использованием польских займов на покупку пшеницы (Польша приобретала американскую пшеницу, что увеличивало её долг перед США, которые снижали размер этого долга на сумму бюджета польской части исследований).
Эта уникальная программа, в рамках которой совместно работали учёные из стран, принадлежавших к разным военно-политическим блокам, была направлена на разработку биполярных и МОП-схем (металл — оксид — полупроводник), подходящих для построения специализированных интегральных схем для искусственных нейронных сетей. Последние с лёгкой руки профессора Николаса Деклариса стали называть микросхемами нейронного типа [neural-type]. С польской стороны проектом руководил доктор Михал Бялко из Гданьского политехнического университета (Politechnika Gdańska), с американской — профессора Декларис и Роберт Ньюкомб из Мэрилендского университета в Колледж-парке (University of Maryland, College Park).
Похожие книги на "Охота на электроовец. Большая книга искусственного интеллекта", Марков Сергей Николаевич
Марков Сергей Николаевич читать все книги автора по порядку
Марков Сергей Николаевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.