Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич
8 Контуры будущего: задачи сегодняшнего и завтрашнего дня
— Тогда мы сможем сами, — восхищенно воскликнул Леопольд, — управлять великими святыми ящиками в Храме и кораблями, которые летают сами по себе, и овладеем Святой Пищей, которая излечивает рак и все другие болезни?!
8.1 Перспективные направления исследований
Отдельный жанр статей в жёлтой прессе составляют публикации, утверждающие, что исследования в области ИИ зашли в тупик. Причём в роли непроходимого тупика фигурируют самые разные проблемы, некоторые из них и вовсе не являются проблемами, какие-то просто иллюстрируют глубокое непонимание автором вопроса, который он взялся освещать, а иные, напротив, соответствуют активно развивающимся секторам. Быстрый прогресс в области ИИ привёл к расширению фронта исследований, при этом прогресс продолжается во множестве направлений. Мы уже рассмотрели немало примеров того, как постепенно улучшаются значения метрик при решении различных задач, как появляются новые модели и подходы, как под напором исследовательских усилий сдаются задачи, которые публика ещё вчера считала неразрешимыми. Конечно, громко заявить, что прогресса нет, — верный способ привлечь к себе внимание, и многие заявления следует воспринимать сквозь призму экономики современных медиа, ориентированной на максимизацию числа просмотров. Но это вовсе не значит, что прогресс даже в такой стремительно развивающейся области, как ИИ, — это лёгкая увеселительная прогулка для учёных. За решениями проблем часто стоят нелёгкий труд, множество экспериментов, размышлений и неудач, остающихся сокрытыми от читателей очередных статей, устанавливающих новую планку SOTA в решении той или иной задачи. Какие вопросы стоят сегодня перед исследователями в области ИИ? Какие направления исследований вызывают наибольший интерес у учёных? В каких сферах мы можем ждать революционных достижений в грядущее десятилетие? Давайте попробуем разобраться и в этом.
Начнём мы с направления, которое традиционно называют AutoML. В отношении коннекционистских моделей одной из наиболее актуальных задач, относящихся к AutoML, является «поиск нейросетевой архитектуры» (Neural architecture search, NAS). Работа специалиста по машинному обучению в наши дни нередко связана с поиском оптимальных параметров модели, а также параметров процесса обучения (которые ещё называют гиперпараметрами, чтобы отличать их от параметров самой модели). В глубоком обучении вслед за подготовкой первой версии обучающей выборки обычно следует этап экспериментов с нейросетевыми архитектурами из нескольких последних SOTA-работ, посвящённых решаемой задаче или задаче, напоминающей решаемую, а затем начинается длительный период экспериментов по модификации выбранной архитектуры, подбору гиперпараметров и различных параметров процесса аугментации данных. Многие из этих действий имеют преимущественно механический характер, что подталкивает к идее о том, что такая работа может быть автоматизирована. Почему бы не использовать какую-нибудь модель машинного обучения, которая будет самостоятельно проектировать другие модели наиболее оптимальным образом? Перспективы этого подхода будоражат воображение: оно тут же начинает рисовать картину самосовершенствующейся системы ИИ, подобной предложенной Юргеном Шмидхубером гипотетической машине Гёделя [Gödel machine] [3254], и того самого «интеллектуального взрыва». Неудивительно, что в этом направлении ведутся активные исследования.
В «классическом» машинном обучении (предназначенном для работы с данными сравнительно небольшой размерности) возможность автоматического подбора параметров модели встроена во многие популярные программные библиотеки: auto-sklearn [3255], AutoWEKA [3256], AutoGluon [3257], H2O [3258], [3259], TPOT [3260], FLO [3261], CatBoost [3262] — эти названия обычно хорошо знакомы тем, кто работает с «неглубокими» моделями машинного обучения. Семь лет назад мы с коллегами также разработали одну из таких библиотек, получившую название Est1mator. Однако «классические» модели обладают существенно меньшим числом параметров, чем «глубокие» модели, да и вычислительные затраты на один эксперимент по обучению модели в случае «неглубоких» моделей обычно заметно скромнее. Долгое время возможность применения методов AutoML к глубокому обучению рассматривалась специалистами как перспектива сравнительно отдалённого будущего. Однако начиная с 2016 г. исследователи Google и DeepMind опубликовали сразу несколько серьёзных работ [3263], [3264], [3265], [3266], [3267], [3268], [3269], [3270], посвящённых этому направлению. Сегодня исследованиями в области NAS занимаются исследователи и других технологических компаний, таких как Samsung [3271], [3272], Microsoft [3273], Facebook [3274], [3275] и Bosch [3276]. Не отстают и университетские [3277] учёные, особенно исследователи из Китая [3278], [3279], [3280]. Собственным инструментом для поиска нейросетевых архитектур обзавелась и одна из популярных библиотек для глубокого обучения — Keras. Этот инструмент, как несложно догадаться, получил наименование Auto-Keras [3281].
За последние годы было создано несколько специальных наборов тестов для оценки возможностей систем поиска эффективных нейросетевых архитектур и гиперпараметров их обучения, например: NAS-bench-101 [3282], [3283], NAS-Bench-201 [3284], NAS-Bench-360 [3285], NAS‑Bench‑x11 [3286], HW-NAS-Bench [3287], NAS-Bench-ASR [3288], NATS-Bench [3289], NAS-HPO-Bench [3290] и NAS-HPO-Bench-II [3291]. Наверное, самым большим триумфом этого подхода на сегодняшний день стало создание [3292], [3293] семейства свёрточных нейросетевых архитектур EfficientNet, которые позволили достичь большей точности и эффективности, чем предыдущие свёрточные архитектуры. В частности, в 2019 г. архитектура EfficientNet-B7 позволила при классификации изображений ImageNet достичь [3294] точности top-1 в 84,3% и точности top-5 в 97,0%, будучи в 8,4 раза меньше и в 6,1 раза быстрее при выполнении, чем лучшая из предшествовавших архитектур (AmoebaNet, обученная с применением библиотеки GPipe) [3295]. В том же году исследователям из Google Brain при помощи более хитрой процедуры обучения, задействующей две нейросети («ученика» и «учителя»), удалось «выжать» из архитектуры EfficientNet-L2 при классификации изображений ImageNet значения точности top-1 и top-5, равные 90,2 и 98,8% соответственно [3296].
Похожие книги на "Охота на электроовец. Большая книга искусственного интеллекта", Марков Сергей Николаевич
Марков Сергей Николаевич читать все книги автора по порядку
Марков Сергей Николаевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.