Геном человека. Энциклопедия, написанная четырьмя буквами - Тарантул Вячеслав Залманович
Ознакомительная версия. Доступно 19 страниц из 91
Хромосома X
Это женская половая хромосома. Наличие двух хромосом X определяет женский пол. Пара для хромосомы X у мужчин — омертвевшая и короткая Y-хромосома. У женщин в одной из 2 хромосом X происходит инактивация всех тех генов, которые не имеют пары на хромосоме Y. В ходе эмбрионального развития эта хромосома на всех нужных участках покрывается особым инактивирующим белком Xist или сжимается «пеленкой» белка-гистона так туго, что не может работать. Генов в хромосоме X немного, и они сосредоточены, главным образом, в двух областях: прицентромерном районе короткого плеча и на конце длинного плеча. Снипсы концентрируются в середине длинного плеча хромосомы. Укажем лишь на небольшую часть заболеваний, ассоциированных с генами хромосомы X: мышечная дистрофия Дюшенна, сидеробластическая анемия, рак груди, рак простаты, кардиомиопатия, хориоидеремия, дискератоз, эпилепсия, глицеролкиназная недостаточность, гонадотропиновая недостаточность, гемофилия В, ихтиоз, синдром Барта, мукополисахароидоз 2.
Y-хромосома
Эта маленькая половая хромосома определяет мужской пол у человека. Содержащиеся в ней последовательности рассматривают как очень «юные». Скорости мутаций в этой хромосоме в 4 раза выше, чем в хромосоме X. Гены, повторы и снипсы выявлены лишь на левом конце этой хромосомы (правый пока не полностью секвенирован). Здесь содержится большое число палиндромов. По этой причине появилось даже выражение: «Y-хромосома — зал зеркал». А вот генов в ней немного. По последним уточненным данным их максимальное число не достигает и 100. На 1 млн. букв-нуклеотидов в среднем приходится всего около 5 генов. Основная роль тех генов, которые имеются, заключается в контролировании дифференцировки пола, формировании яичек и процесса сперматогенеза. В частности, основной ген «самцовости», названный SRY (Sex-determining Region of Y), кодирует белок, который включает в работу многие гены других хромосом и тем самым вызывает каскад биохимических реакций (конечный результат — образование яичек). Ген SRY практически одинаков у всех людей, но в десять раз более отличен у людей и обезьян, чем все другие их гены. Иными словами, на сегодняшний день это самый консервативный ген внутри вида и самый динамичный между видами. Отмечены случаи, когда в клетках имеется не одна, а две и даже 3 копии хромосомы Y. Характерными признаками такой хромосомной патологии являются асоциальное поведение и различные психологические нарушения, характерные для 35% больных. Совсем немного генов в хромосоме Y ассоциировано с болезнями человека. Основные из них — гонадный дисгенез и синдром клеток Сертоли.
25-я ХРОМОСОМА — ВАЖНОЕ ДОПОЛНЕНИЕ (митохондриальный геном)
Мал золотник, да дорог.
Русская поговорка
Когда сейчас громогласно заявляют о полном секвенировании генома человека, то, как правило, подразумевают ядерный геном. На этом фоне как-то забывается, что в клетках имеются молекулы ДНК, расположенные не только в хромосомах, но и в таких уже упоминавшихся специфических внутриклеточных структурах, как митохондрии. И это тоже геном человека, но он называется митохондриальным, а ДНК — митохондриальной (сокращенно митДНК). МитДНК теперь называют иногда хромосомой 25 или М-хромосомой. Эта ДНК была секвенирована еще в 1981 году уже упоминавшимся Ф. Сенгером, что тоже было в свое время сенсацией, которая, однако, имела резонанс несопоставимо меньший, чем секвенирование ядерного генома. Что же представляет собой эта 25-ая хромосома человека?
В клетке человека насчитывается от 100 до 1000 митохондрий, в каждой из которых содержится от 2 до 10 молекул кольцевой митДНК длиной 16569 п. н. Таким образом, размер митохондриального генома примерно в 200 000 раз меньше ядерного. Интересно, что размер митДНК у человека — один из наименьших среди высших организмов (эукариот). Например, у дрожжей митДНК состоит из 78520 п. н. Человеческая митДНК содержит 37 генов, кодирующих 13 белковых цепей, 22 тРНК и 2 рибосомных РНК (рРНК) (рис. 30). Белковые цепи входят в состав белков, которые участвуют в основном в важнейшем внутриклеточном процессе, называемом окислительным фосфорилированием, который обеспечивает клетку энергией. За счет окислительного фосфорилирования в митохондриях осуществляется производство более 90% специальных молекул АТФ, являющихся основой энергетики клетки.
Рис. 30. Структура митохондриального генома человека (митДНК). В митДНК содержится 22 гена, кодирующих тРНК, 2 рибосомных гена (16S и 12S рРНК) и 13 белок-кодирущих генов. Стрелками указано направление транскрипции генов. Сокращения: ND1—ND6, ND4L — гены субъединиц НАД-Н-дегидрогеназного комплекса; COI—COIII — гены субъединиц цитохром-с-оксидазы; ATP6, ATP8 — гены субъединиц АТФ-синтетазы; Cyt b — ген цитохрома b
Всего же в процессе окислительного фосфорилирования задействовано 87 генов, но все недостающие 74 кодируются не митохондриальным, а ядерным геномом. Интересно, что в ядерном геноме обнаруживаются участки, подобные митДНК. Предполагается, что в процессе эволюции и при различных патологиях имела место миграция части митДНК в ядерный геном.
Важно, что устройство митохондриального генома существенно отличается от ядерного. В первую очередь, для митДНК характерно очень компактное расположение генов, как и в геноме бактерий. В отличие от ядерного генома митохондриальные гены соседствуют друг с другом и между ними практически отсутствуют межгенные промежутки. В ряде случаев они даже перекрываются на один нуклеотид: последний нуклеотид одного гена оказывается первым в следующем за ним. То есть гены набиты в митохондриальной ДНК, как сельди в бочке. Кроме того, большинство митохондриальных генов не содержит такие характерные для ядерных генов структуры, как интроны. Но это еще не все отличия. Выяснилось, в частности, что митДНК не подвержена такой модификации, как метилирование, которая характерна для ядерной ДНК.
Однако особенное удивление исследователей вызвал генетических код, используемый в митДНК. Хотя генетический код универсален (за очень небольшим исключением) во всем живом мире, в митохондриях используется некий его необычный вариант. Большинство кодонов в митохондриальных генах сходны с теми, которые имеются в ядерной ДНК, но наряду с этим имеются и принципиальные отличия. В митДНК человека изменили свой смысл четыре кодона. Терминирующими стали кодоны АГА и АГГ. Кодон УГА, являющийся в ядерной ДНК терминирующим, в митДНК не только не вызывает остановки трансляции, а кодирует аминокислоту триптофан. Аминокислоту метионин кодируют не один кодон АУГ, а еще кодон АУА, который в ядерном геноме кодирует аминокислоту изолейцин.
МитДНК ответственна в клетке за синтез всего лишь нескольких митохондриальных белков. Но эти белки очень важны для клетки, поскольку участвуют в осуществлении одного из важнейших процессов — обеспечении клетки энергией. Таким образом, митДНК — весьма ценное приложение к Энциклопедии человека. Белки, кодируемые непосредственно генами митДНК, синтезируются тут же в митохондриях. Для этой цели используется собственная РНК-полимераза и собственный аппарат белкового синтеза. Причина ясна — генетический код митохондрий особый, нужна и особая система биосинтеза.
Далеко не все белки, которые нужны для автономного существования митохондрий, кодируются митохондриальным геномом и синтезируются здесь же. Для этого их геном слишком мал. Большая часть митохондриальных белков и отдельных субъединиц этих белков кодируется основным, т. е. ядерным геномом и синтезируется в цитоплазме клеток. Затем они транспортируются в митохондрии, где взаимодействуют со специфическими белками, кодируемыми митДНК. Таким образом, между ядерным и митохондриальным геномом существует тесная взаимосвязь, они дополняют друг друга.
Почему в эволюции клетки случилось так, что очень небольшая часть ДНК содержится не в хромосомах ядра, а отдельно внутри митохондрий? В чем необходимость или преимущество такого распределения генетического материала, пока неизвестно. Для объяснения этого удивительного факта было придумано много гипотез. Одну из первых еще в далеком 1890 году высказал Р. Альтман. Однако она и на сегодняшний день сохранила актуальность. Согласно этой точке зрения, митохондрии появились в клетках высших организмов не в ходе внутриклеточного развития и дифференцировки, а в результате естественного симбиоза высших организмов с низшими аэробными организмами. Такое объяснение предполагает, что митохондриальный генетический код более древен, чем код, используемый в ядерной ДНК у современных организмов.
Ознакомительная версия. Доступно 19 страниц из 91
Похожие книги на "Геном человека. Энциклопедия, написанная четырьмя буквами", Тарантул Вячеслав Залманович
Тарантул Вячеслав Залманович читать все книги автора по порядку
Тарантул Вячеслав Залманович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.