Простое начало. Как четыре закона физики формируют живой мир - Партасарати Рагувир
Поразительный пример такого генетического контроля описан Хайди Скрабл и ее коллегами из Университета Вирджинии в статье 2001 года с бесхитростным названием «Система lac-оператор – lac-репрессор работает у мыши»7. Ученые использовали мышей-альбиносов с мутантным геном тирозиназы, необходимой для производства пигмента. Внедряя в мышиную ДНК рабочий ген тирозиназы и его промотор (см. рисунок), авторы получали животных с типичной для вида пигментацией – с коричневой шерстью и карими глазами. Одной из любопытнейших частей эксперимента была организация управления генами пигментации. Хотя у животных немало регуляторных систем, свойственной бактериям lac-системы они лишены. Тем не менее ученые создали мышь с сайтом связывания lac-репрессора между промотором и кодирующей частью гена тирозиназы. Поскольку у млекопитающих нет гена lac-репрессора, а значит, и белка, синтез тирозиназы не подавлялся, и пигментация у таких мышей оказывалась нормальной (второй ряд на рисунке).
Другой линии мышей, тоже несущей ген тирозиназы под контролем lac-оператора, внедрили и ген lac-репрессора с собственным промотором. Эти мыши производили белок-репрессор (темная фигура), подавлявший экспрессию гена тирозиназы и лишавший их пигментации (третий ряд). Когда таких мышей поили водой с примесью ИПТГ, у них появлялась коричневая окраска (четвертый ряд). Как и в случае с бактериями, ИПТГ не позволял lac-репрессору блокировать считывание зависимого гена.

Наряду с нашей почти непостижимой способностью менять цвет шерсти и глаз животного с помощью сахароподобной молекулы в питьевой воде, этот эксперимент подчеркнул универсальность механизмов жизни. Последний общий предок мышей и бактерий сгинул более 3 миллиардов лет назад. С тех пор эволюция его потомков шла разными путями, выдав нам два непохожих существа: одноклеточный микроорганизм и мохнатого зверька размером с ладонь. Тем не менее, если вставить регуляторный аппарат одного из них в геном другого, он работает без нареканий [27]. Как за полвека до этого прозорливо и емко отметил сам Моно, «что истинно для E. coli, истинно и для слонов» [28].
Помимо lac-системы существует множество других, позволяющих организмам – или ученым – регулировать экспрессию генов. Подобные конструкции в ходу и в моей лаборатории. Только мы не меняем цвет мышиной шерсти, а включаем и отключаем способность некоторых бактерий плавать: добавляя в воду простой реагент, мы побуждаем их собирать или разбирать свои микроскопические моторы. Этот инструмент дает нам возможность оценить, насколько плавание помогает бактериям преуспевать в их среде. Всего за несколько десятилетий такая работа перетекла из области научной фантастики в реальность и продолжает упрощаться дальше.
Если вы нажмете на выключатель, чтобы зажечь свет, вам не нужно будет удерживать палец на кнопке, чтобы лампа не погасла. Выключатель зафиксируется в новом стабильном положении и останется в нем, пока его не зафиксируют в другом, тоже стабильном. Природа и ученые тоже часто прибегают к подобным рубильникам: они направляют клетки на определенный путь при получении сигнала и не дают им свернуть с него, даже если сигнал пропал. У растений и животных это особенно важно для развития клеток разных типов. Так, и нейроны, и глия, которая помогает нейронам функционировать, берут начало от общей клетки-предшественницы. Специфические сигналы направляют ее на путь формирования нейрона, после чего она обречена экспрессировать соответствующий набор генов, создавать синапсы с другими клетками и выполнять все остальные задачи, возложенные на нейрон. Наверняка вам не хотелось бы постоянно уведомлять нейрон, что не стоит ему возвращаться к предковой форме, равно как и обращаться в глию либо нейронно-глиальную несуразицу. Чтобы тип клетки не менялся, генам нужны тумблеры. Иными словами, клеткам нужна память: они должны запоминать воспринятые когда-то стимулы, перекодируя их в схемы экспрессии генов, стабильные в настоящем и будущем.
Способов создать воспоминание много. Есть и такой, который основан на знакомом нам действии факторов транскрипции. Представьте два гена, A и B. Как и в случае с lac, у гена А есть репрессор. Теперь допустим, что ген этого репрессора находится сразу за геном B по ходу транскрипции, поэтому, если экспрессируется B, то экспрессируется и он. Представьте, что ниже A по ходу транскрипции, подобно гену репрессора А, находится ген репрессора B, и если экспрессируется А, экспрессируется и этот ген. Такая взаимная репрессия обеспечивает работу памяти. Допустим, A экспрессируется сильно. Клетка производит много репрессора гена B, поэтому B подавляется, в отличие от А (репрессор гена А не считывается из-за совместной с В репрессии), что соответствует сильной экспрессии А. Клетка продолжает существовать в состоянии А. С другой стороны, если сильно экспрессируется B, события развиваются противоположным образом и клетка продолжает существовать в состоянии B. У этой клетки два стабильных типа поведения. Мы можем переключиться между ними, например, наводнив клетку множеством сигналов активации или репрессии какого-то из этих генов. Если в регуляторном аппарате задействован lac-репрессор, то таким сигналом может быть ИПТГ. С этого момента клетка будет хранить воспоминание о произошедшем событии.
Здесь проиллюстрирован общий принцип, который заключается в том, что гены регулируют экспрессию генов. Иными словами, обратная связь между генами формирует те или иные паттерны активности. В нашем примере тумблером служили два варианта репрессии (отрицательная обратная связь). И это не гипотетическая история: такая схема часто работает в живой природе: например, заразившие бактерию вирусы вынуждены выбирать между состояниями активного размножения и «спячки». Но немало и других эффективных схем. Мы можем, например, совместно экспрессировать ген А и ген его активатора, усиливая результат стимуляции, изначально направившей клетку на путь А (положительная обратная связь).
Мы узнаем время по часам. В основе конструкции любых часов лежит какой-то периодический, ритмический феномен вроде колебаний маятника или частых вибраций кварцевого кристалла. Все живые организмы и даже отдельные клетки используют часы, чтобы контролировать активность, которая должна усиливаться и ослабевать с определенной периодичностью. Прекрасный пример – циркадные ритмы8. У многих растений выработка хлорофилла организована примерно в 24-часовом цикле, что соответствует длительности суток. Растение ориентируется не только на внешние сигналы, которые непостоянны из-за теней и облаков, но и на внутренний механизм отсчета времени с 24-часовым периодом. Он есть и у людей: температура тела, кровяное давление и, разумеется, сонливость повышаются и снижаются у вас примерно раз в сутки, даже если вы неделями сидите в комнате с неизменной освещенностью. Циркадные часы есть у животных, грибов и даже некоторых бактерий. Восприятие света помогает поддерживать ритм и сдвигает моменты пиков и минимумов, но сама периодичность обусловлена внутренними осцилляторами.
Регуляция активности генов позволяет отдельной клетке создать осциллятор исключительно из ее собственных компонентов. Здесь мы вынуждены уйти в некоторую абстракцию, поскольку реальные клеточные осцилляторы устроены сложно и задействуют множество генов. Для иллюстрации общего принципа можно обойтись и одним.
Простейший осциллятор состоит из гена, который репрессирует сам себя, – точнее, гена, кодирующего белок, который подавляет экспрессию своего же гена. На первый взгляд это кажется нелепым: как такой ген вообще будет работать? Разгадка здесь в том, что и на экспрессию, и на репрессию нужно время. Как мы помним, экспрессия гена предполагает транскрипцию участка ДНК в молекулу РНК, а затем (для белок-кодирующих генов) трансляцию этой РНК в цепочку аминокислот – белок. Если формируется белок-репрессор, то ему предстоит какое-то время поблуждать, прежде чем он наткнется на промоторную область подавляемого гена. Даже после того, как репрессор свяжется с ДНК и блокирует работу РНК-полимеразы, ген инактивируется не сразу. Уже произведенные копии РНК могут и дальше транслироваться, а синтезированные белки могут и дальше заниматься своими делами. Суть в том, что экспрессия может какое-то время нарастать, и ген еще остается активным, хотя и репрессирует сам себя. Чтобы лучше понять, как колеблется его активность, нам нужно привлечь еще один факт о белках: все белки со временем деградируют, то есть разрушаются.
Похожие книги на "Простое начало. Как четыре закона физики формируют живой мир", Партасарати Рагувир
Партасарати Рагувир читать все книги автора по порядку
Партасарати Рагувир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.