Квантовая магия - Доронин Сергей Иванович
На простом примере я попытаюсь показать, как строится матрица плотности. Рассмотрим систему, состоящую из двух частей ( Аи B), каждая из которых может находиться в двух состояниях 0 и 1. Вектор типа |01ñ означает, что подсистема
А
находится в состоянии 0 (пусть она стоит на первой позиции), а подсистема B— в состоянии 1.Если система замкнута (чистое состояние), то мы можем записать для нее вектор состояния, например, в стандартном базисе:
|Ψñ = a|00ñ + b|01ñ + c|10ñ + d|11ñ, (3.1)
где a, b, c, d— в общем случае комплексные числа (амплитуды) и выполняется условие нормировки | a| 2+ | b| 2+ | c| 2+ | d| 2= 1.
Вектор состояния (3.1) описывает все возможные состояния системы, и их бесконечное число, поскольку амплитуды заданы на множестве комплексных чисел. То есть a, b, c, dмогут быть любыми числами (удовлетворяющими условию нормировки), как вещественными, так и комплексными, и таких чисел бесконечно много.
Матрица плотности для чистого состояния записывается как проектор |ΨñáΨ| (вектор-столбец (3.1) нужно умножить на комплексно сопряженную строку). Это матрица 4 × 4 и по диагонали в ней стоят | a| 2, | b| 2, | c| 2, | d| 2— это вероятности нахождения системы в каждом из четырех возможных собственных состояний |00ñ, |01ñ, |10ñ, |11ñ соответственно. Сумма вероятностей этих состояний (след матрицы плотности) равна 1 (условие нормировки). Недиагональные элементы характеризуют корреляции (взаимодействия) между четырьмя различными состояниями системы, в них содержится информация о градиентах энергии, возникающих в ней.
Состояние (3.1) может быть максимально запутанным, например, одно из них:

Матрица плотности в этом случае равна:

То есть система с равной вероятностью 1/2
находится
в состояниях |00ñ и |11ñ («кот ни жив, ни мертв») — это диагональные элементы. И корреляции между этими состояниями максимальны (недиагональные элементы). Мы видим, что недиагональные элементы равны друг другу и расположены симметрично, как и должно быть для любой матрицы плотности.При измерении этого нелокального состояния (при декогеренции) мы получим одно из двух классических локальных (сепарабельных) состояний |00ñ или |11ñ с равной вероятностью.
Существует простой способ проверить, относится ли какая-либо матрица плотности к чистому состоянию или нет. Если умножить матрицу саму на себя, и она при этом не изменится (получится та же самая матрица), то есть если выполняется равенство ρ 2=
ρ
, то можно сразу сказать, что данная матрица плотности описывает чистое состояние, и для него может быть записан вектор состояния. Такие матрицы, которые не меняются при умножении самой на себя, называются идемпотентными. Таким образом, любая матрица плотности чистого состояния — идемпотентная.Если система незамкнутая (открытая), то это смешанное состояние, и тогда она не описывается вектором состояния, но ее по-прежнему можно описать матрицей плотности. Например, максимально смешанное состояние:

Его уже нельзя записать в виде вектора состояния (3.1). В этом случае нет корреляций между состояниями |00ñ|01ñ|10ñ|11ñ, и при измерении можно получить любое из этих состояний с равной вероятностью 1/4.
Замечу, что матрица плотности такого вида получается, если мы хотим описать состояние одной из подсистем, например
А
, в случае максимально запутанного состояния типа (3.2). Так, если мы возьмем частичный след по подсистеме Bи получим частичную матрицу плотности размерностью 2 × 2, которая описывает подсистемуА
, то эта матрица плотности будет соответствовать максимально смешанному состоянию и иметь вид:

Подсистема
А
с равной вероятностью 1/2 может находиться в состоянии |0ñ или |1ñ.Нужно еще иметь в виду, что, когда мы говорим «состояние системы», то смысл этого выражения обычно зависит от контекста. Речь может идти о состоянии, полученном в результате измерения (декогеренции), то есть об одном из реализованных собственныхсостояний системы (об одном из диагональных состояний матрицы плотности). Или имеется в виду исходное состояние, то есть сам вектор состояния (вся матрица плотности), тогда по ее структуре можно судить о квантовой запутанности и о корреляциях (в частности, о градиентах энергии). В простых случаях, например, для матрицы плотности типа (3.3) (когда 1/2 стоят по четырем углам, а остальные нули), сразу можно сказать, что это максимально запутанное cat-состояние.
Понятие матрицы плотности исключительно важно в квантовой теории. Только в терминах матриц плотности можно рассматривать части взаимодействующей системы. Рассуждать об «
ЭПР-парадоксе
» в терминах пси-функции вообще не имеет смысла. Матрица плотности содержит информацию двоякого рода: во-первых — о корреляциях между частями самой системы; во-вторых — о корреляциях системы с окружением (которых может и не быть в случае чистого состояния). Речь идет, прежде всего, о нелокальных корреляциях, поскольку классические корреляции (сепарабельные состояния) и раньше с успехом описывались теми же пси-функциями. Но только на основе матриц плотности стало возможным описание квантовых корреляций (несепарабельных состояний). Только с их помощью квантовая теория стала по-настоящему квантовой, способной охватить ее основную специфику, отличающую ее о
т классической физики — несепарабельные (запутанные) состояния.На основе матриц плотности стало возможным ввести количественные характеристики квантовой запутанности, и этот момент, как я считаю, стал поворотным для квантовой теории. По своей значимости данное событие стоит в ряду самых выдающихся достижений не только квантовой механики, но и всей науки в целом. Появилась возможность количественно описывать новую, неизведанную сферу реальности. Я бы сравнил этот момент с отрывом науки от грешной земли и ее выходом в безбрежный «космос», в «царство небесное» нелокальных состояний.
3.2. Количественное описание квантовых корреляций
Мера квантовой запутанности — это количественная характеристика несепарабельности, числовое значение величины квантовых корреляций и степени нелокальности объекта. По моему мнению, до того, как квантовая теория стала количественно описывать запутанные состояния, она и не была квантовой. Как и классическая физика, она ограничивалась описанием сепарабельных состояний. Можно сказать, что «микроскопом забивали гвозди»: тонкий теоретический инструмент, который позволял заглянуть в самые глубины мироздания, приблизить понимание нелокальных уровней реальности, использовался не по назначению. Я бы сказал, что в прошлом веке квантовая механика «тренировалась», отрабатывала и совершенствовала свои методы на плотной материи, «разминалась» перед прыжком в Тонкий мир. Причем уже в процессе этой своеобразной разминки ее результаты перекрыли все достижения классической физики вместе взятые.
Похожие книги на "Квантовая магия", Доронин Сергей Иванович
Доронин Сергей Иванович читать все книги автора по порядку
Доронин Сергей Иванович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.