Простое начало. Как четыре закона физики формируют живой мир - Партасарати Рагувир
Еще с главы 1 мы наблюдаем, что у ДНК и остальных материалов живого организма биологическая функция неотделима от физической формы. Описывая восхитительные инструменты для чтения ДНК, я отметил, что их не удалось бы изобрести, если бы к ДНК не подошли как к физическому объекту, ведь они обязаны разрезать, наращивать, перемещать и отслеживать ДНК, учитывая ее вещественные характеристики и общие принципы самосборки и случайности. Это же относится и к редактированию генов – мы ведь вносим изменения в саму нить ДНК. Здесь, однако, мы работаем с этой молекулой внутри живых клеток, а не в спецаппарате, и потому используем другие подходы. В этой главе мы узнаем, как редактировать ДНК с помощью революционной технологии XXI века, называемой CRISPR/Cas9. Чтобы прочувствовать поразительные уникальность и мощь этого инструмента, имеет смысл рассмотреть вначале методы, предшествовавшие ему и примечательные сами по себе.
Герои этой саги о геномном редактировании – бактерии, способности которых уже не раз поражали нас в предыдущих главах. Многие виды бактерий, как и непритязательную рабочую лошадку E. coli, легко выращивать в огромных количествах в условиях лаборатории. В ведре с теплым питательным бульоном могут плавать триллионы E. coli, которые растут, делятся и производят уйму белков. Эти белки, закодированные в бактериальном геноме, расщепляют сахара, помогают клеткам перемещаться в жидкости, формируют мембраны и так далее. Что, если подарить E. coli человеческий ген, на основе которого она могла бы производить человеческий белок, например инсулин? Бактерия превратилась бы в миниатюрный фармацевтический завод – живой и способный к практически бесконечному самовоспроизводству.
Я не случайно привел в пример инсулин. У людей, страдающих сахарным диабетом I типа, не вырабатывается гормон инсулин, а значит, не регулируется уровень сахара в крови, что приводит к тяжелым нарушениям, порой даже фатальным. С 1920-х годов диабет компенсировали инсулином свиней и коров, который нужно было сложно и дорого очищать1. Технологии совершенствовались, но даже в 1970-е для получения каких-то 450 граммов гормона требовалось переработать поджелудочные железы более чем 20 тысяч животных. Кроме того, из-за животного происхождения препарата у больных часто случались аллергические реакции. Подобно белкам Sonic hedgehog, с которыми мы встречались в главе 7, последовательности аминокислот в инсулинах человека и других животных очень похожи – похожи достаточно, чтобы выполнять свою функцию, – но все же они не идентичны, и эти незначительные различия вкупе со следовыми количествами примесей в животных экстрактах могут провоцировать мощный иммунный ответ. По всем этим причинам идея о массовом производстве человеческого инсулина казалась очень заманчивой. Однако на всем протяжении истории нашего вида до 1970-х люди оставались единственным крупным источником человеческих белков. Ситуация изменилась, когда мы научились перемещать гены от вида к виду, начав с трансформации бактерий.
Я немного задержусь на самом процессе превращения бактерий в машины, служащие нашим нуждам, поскольку лежащая в его основе философия сильно отличается от нашего подхода к небиологической инженерии. В комиксе «Кальвин и Хоббс» [61] шестилетний Кальвин спрашивает у отца: «Папа, как узнают, какую нагрузку выдержит мост?» Отец отвечает: «По нему пускают все более и более тяжелые грузовики, пока он не развалится. Затем последний грузовик взвешивают и восстанавливают мост». Кальвин поражен, а нам смешно, потому что это нелепо. Точно так же никому и в голову бы не пришло собирать автомобиль, случайным образом соединяя друг с другом детали – двигатель, оси, колеса и прочее – в поисках одной из миллиона комбинаций, способной стать рабочим транспортным средством. Зато в сфере биоинженерии такой подход вполне логичен благодаря способности биологических материалов к самосборке и их устройству из повторяющихся модулей.
В ходе эволюции бактерии обзавелись мощными инструментами для работы с ДНК, включая ферменты, называемые рестриктазами, которые разрезают двойную спираль. Разрезы вносятся не беспорядочно: каждая рестриктаза распознает специфическую последовательность нуклеотидов: как правило, ферменты «дрессируются» нападать на тот или иной участок, исходя из истории заражений бактериального вида вирусами, то есть геномами с характерными последовательностями ДНК. Иными словами, рестриктазы участвуют в защите от вирусного вторжения в ходе стародавней войны, к которой мы вернемся чуть позже. Большинство рестриктаз оставляют концы разрезанной ДНК не «тупыми», а «липкими» – это реальные научные термины, – чтобы им было проще удерживаться вместе с другими такими же концами. Липкость обеспечивается не каким-то клейким веществом, а контуром среза: с каждой из сторон разреза одна из цепей двухцепочечной ДНК выступает на несколько нуклеотидов относительно другой (см. рисунок). Выступающие концы разных фрагментов, полученных разрезанием одной и той же рестриктазой, могут связываться друг с другом по принципу комплементарности, то есть напротив A одного из них встает T другого, а напротив Ц – Г.

Другая особенность бактерий состоит в их склонности поглощать ДНК из окружающей среды, что позволяет им перенимать полезные черты у почивших соседей. Особенно часто и ловко бактериальные клетки обмениваются маленькими внехромосомными молекулами ДНК. Эти, как правило, кольцевые и способные к автономной репликации геномы, называемые плазмидами, есть у многих бактерий.
Позаимствовав описанный набор инструментов, мы сможем внедрить человеческий ген в бактерию. Сначала нужно добыть фрагмент ДНК, соответствующий интересующему нас гену, – например, гену человеческого инсулина. Можно либо воспользоваться природным вариантом из чьего-то генома, либо создать ген с нуля – такие небольшие цепочки нуклеотидов умели химически синтезировать даже в 1970-х. Как вы помните, благодаря ПЦР – еще одной технологии микробного происхождения (см. главу 1) – даже ничтожное количество ДНК можно размножить до миллионов идентичных копий. После размножения фрагмента ДНК с целевым геном внутри необходимо вырезать этот ген выбранной рестриктазой: она внесет нужные нам разрезы по обе стороны от него. Так образуется множество одинаковых копий гена с липкими концами. Параллельно нужно выделить из выращенных в огромном количестве бактерий плазмиды и расщепить их в одном-единственном месте той же рестриктазой. Если содержимое двух пробирок смешать, фрагменты целевого гена и «открытые» колечки плазмид будут перемещаться в водной среде, случайно сталкиваясь друг с другом в броуновском танце. Некоторые из них комплементарно свяжутся друг с другом и замкнутся в новые, более крупные колечки, состоящие из плазмидной ДНК и целевого гена (отмечен на рисунке изогнутыми отрезками) [62].

Некоторые колечки закрываются и без целевого гена, но вскоре мы увидим, что такие пустышки не играют роли. Главное, что нужная нам последовательность оказывается хотя бы в нескольких плазмидах. (Если приглядеться к рисунку, в остове ДНК можно заметить зазоры в точках соединения липких концов; они исчезают, когда бактериальный фермент ДНК-лигаза сшивает стыкующиеся нуклеотиды вставки и плазмиды.)
Далее необходимо доставить плазмиды в бактериальные клетки. Поглощение ДНК из среды – трансформация – само по себе происходит редко, но его можно стимулировать тепловыми или электрическими импульсами, которые открывают в бактериальной оболочке врéменные поры. И все же лишь у небольшой доли бактерий внутри окажутся исходные либо рекомбинантные (со встроенным геном) кольца ДНК. Можно, однако, провести отбор в пользу именно этих микробов, уничтожающий всех остальных. Ученые выбирают или создают плазмиды, содержащие полезные для работы гены, в том числе и те, что обеспечивают устойчивость хозяйской клетки к антибиотикам. Если бактерии после этапа трансформации поместить в среду с антибиотиком, в живых останутся лишь клетки с плазмидами. Если таких клеток мало, не беда: в питательном бульоне они превратятся в миллиарды. Разумеется, в части выживших бактерий окажутся плазмиды без вставки, но нехитрые техники определения размера или последовательности плазмидной ДНК позволят выявить и отбраковать такие варианты. В итоге мы будем размножать только правильные бактериальные клоны2.
Похожие книги на "Простое начало. Как четыре закона физики формируют живой мир", Партасарати Рагувир
Партасарати Рагувир читать все книги автора по порядку
Партасарати Рагувир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.