Творчество как точная наука. Теория решения изобретательских задач - Альтов Генрих Саулович
Есть много тонких механизмов решения, которые сегодня еще нельзя сформулировать в виде простых правил. Они пока не включены в текст АРИЗ, но их можно «встроить» по усмотрению преподавателя, когда обучающиеся привыкнут вести анализ, не обрывая его где-то в середине извечным: «А что если сделать так?..»
Как мы уже говорили, Гордон, создавая синектику, дополнил мозговой штурм четырьмя видами аналогий, в том числе эмпатией — личной аналогией. Сущность этого приема заключается в том, что человек, решающий задачу, «входит» в образ совершенствуемого объекта и старается осуществить требуемое задачей действие. Если при этом удается найти какой-то подход, какую-то новую идею, решение «переводится» на технический язык. «Суть эмпатии, — говорит Дж. Диксон, — состоит в том, чтобы «стать» деталью и посмотреть с ее позиции и с ее точки зрения, что можно сделать» [9, с. 45]. Далее Дж. Диксон указывает, что этот метод очень полезен для получения новых идей.
Практика применения эмпатии при решении учебных и производственных задач показывает, что эмпатия действительно иногда бывает полезна. Но иногда она бывает и очень вредна. Почему?
Отождествляя себя с той или иной машиной (или ее частью) и рассматривая ее возможные изменения, изобретатель невольно отбирает те, которые приемлемы для человека, и отбрасывает неприемлемые для человеческого организма, например разрезание, дробление, растворение в кислоте и т. д.
Неделимость человеческого организма мешает успешно применять эмпатию при решении многих задач, подобных, например, задачам 23–25.
Недостатки эмпатии устранены в моделировании с помощью маленьких человечков (ММЧ) — методе, который применяется в АРИЗ. Суть его состоит в том, чтобы представить объект в виде множества («толпы») маленьких человечков. Такая модель сохраняет достоинства эмпатии (наглядность, простота) и не имеет присущих ей недостатков.
В истории науки известны случаи, когда стихийно применялось нечто похожее на ММЧ. Два таких случая особенно интересны. Первый — открытие Кекуле структурной формулы бензола.
«Однажды вечером будучи в Лондоне, — рассказывает Кекуле, — я сидел в омнибусе и раздумывал о том, каким образом можно изобразить молекулу бензола С6 Н6 в виде структурной формулы, отвечающей свойствам бензола. В это время я увидел клетку с обезьянами, которые ловили друг друга, то схватываясь между собой, то опять расцепляясь, и один раз схватились таким образом. что составили кольцо. Каждая одной задней рукой держалась за клетку, а следующая держалась за другую ее заднюю руку обеими передними, хвостами же они весело размахивали по воздуху. Таким образом, пять обезьян, схватившись, образовали круг, и у меня сразу же блеснула в голове мысль: вот изображение бензола. Так возникла вышеприведенная формула, она нам объясняет прочность бензольного кольца» (цит. по [7. т. 2, с. 80–81]).
Второй случай еще более известен. Это мысленный эксперимент Максвелла при разработке им динамической теории газов. В этом мысленном опыте были два сосуда с газами при одинаковой температуре. Максвелла интересовал вопрос, как сделать, чтобы в одном сосуде оказались быстрые молекулы, а в другом медленные. Поскольку температура газов одинакова. сами по себе молекулы не разделятся: в каждом сосуде в любой момент времени будет определенное число быстрых и медленных молекул. Максвелл мысленно соединил сосуды трубкой с дверцей, которую открывали и закрывали «демоны» — фантастические существа примерно молекулярных размеров. Демоны пропускали из одного сосуда в другой быстрые частицы и закрывали дверцу перед маленькими частицами.
Два эти случая интересны, прежде всего тем, что объясняют, почему в ММЧ взяты именно маленькие человечки, а не, например, шарики или микробы. Для моделирования нужно, чтобы маленькие частицы видели, понимали, могли действовать. Эти требования естественнее всего ассоциируются с человеком: у него есть глаза, мозг, руки. Применяя ММЧ, изобретатель использует эмпатию на микроуровне. Сохранена сильная сторона эмпатии и нет присущих ей недостатков.
Эпизоды с Кекуле и Максвеллом описывались многими авторами. Но никто не связывал их вместе и не задумывался над вопросом: вот два случая в разных отраслях науки, почему бы не превратить эти случаи в метод, используемый сознательно? Историю с Кекуле обычно приводили, чтобы поговорить о роли случайности в науке и изобретательстве. А из опыта Максвелла делали и без того очевидный вывод, что ученому нужно воображение…
Техника применения метода ММЧ сводится к следующим операциям:
— на шаге 3.3 надо выделить часть объекта, которая не может выполнить требования, указанные на шаге 3.2, и представить эту часть в виде маленьких человечков;
— надо разделить человечков на группы, действующие (перемещающиеся) по условиям задачи;
— полученную модель надо рассмотреть и перестроить так, чтобы выполнялись конфликтующие действия.
Например, в задаче 24 рисунок к шагу 3.3 обычно выглядит так, как показано на рис. 1, а: выделен внешний слой круга, который по структуре ничем не отличается от центральной части круга. На рис. 1, б показан тот же рисунок, но сделанный с использованием ММЧ. Маленькие человечки, соприкасающиеся с обрабатываемой поверхностью, удаляют частицы металла, а другие человечки придерживают «работников», не давая им вылететь из круга, упасть, быть отброшенными. Меняется глубина впадины — соответственно перестраиваются человечки. Рассматривая левый рисунок, не так просто прийти к выводу о необходимости раздробить наружную часть на «зерна», сделав эти зерна подвижными и в то же время «цепляющимися» за круг. Правый рисунок приводит к этой идее.
Однажды на семинаре по ТРИЗ слушателям была предложена задача об увеличении скорости движения ледокола: повысить скорость за счет увеличения мощности двигателей нельзя; современные ледоколы настолько «заполнены» двигателями, что почти не несут полезной нагрузки (подробные условия задачи и запись решения по АРИЗ, см. [13, с. 179–188]).

Сначала задачу решали, используя эмпатию. Один из слушателей, вживаясь в «образ ледокола», сосредоточенно ходил по комнате, а потом подошел к столу «Это — лед, — сказал слушатель. — А я — ледокол. Я хочу пройти сквозь лед, но лед меня не пропускает…». Он давил на «лед», наскакивал на него с разбега, временами ноги «ледокола» пытались пройти под столом, но туловище этому мешало, иногда туловище пыталось пройти над столом, но мешали ноги… Отождествив себя с ледоколом, слушатель перенес на ледокол неделимость, присущую человеческому организму, и тем самым усложнил задачу, эмпатия в данном случае только затрудняла решение.
На следующем занятии тот же слушатель решал задачу, используя метод ММЧ. Он подошел к столу, несколько секунд подумал, потом с некоторой растерянностью сказал: «Не понимаю, в чем задача… Если я состою из толпы маленьких человечков, верхняя половина толпы пройдет над столом, нижняя — под столом… По-видимому, задача теперь в том, как соединить две части ледокола — надводную и ту, что подо льдом. Прядется ввести какие-то стойки, узкие, острые, они легко пройдут сквозь лед, не надо будет ломать огромную массу льда…»
Метод ММЧ еще не исследован до конца, в нем много загадочного. Скажем, в задачах на измерение длины выделенную часть элемента лучше представлять, не в виде сплошной шеренги человечков, а как шеренгу «через одного». Еще лучше, если человечки расположены в виде треугольника. И еще лучше — неправильным треугольником (с неравными или криволинейными сторонами). Почему? Пока тут можно только строить догадки. Но правило действует…
Вспомним хотя бы задачу 7. Нужно измерить глубину реки с самолета. По условиям задачи вертолет применить нельзя, высадка людей недопустима, использовать какие-нибудь свойства радиоволн тоже нельзя, потому что нет возможности заказывать специальное оборудование. К тому же замеры глубины надо вы- полнить в сущности бесплатно (допустимы только расходы на оплату полета вдоль реки).
Похожие книги на "Творчество как точная наука. Теория решения изобретательских задач", Альтов Генрих Саулович
Альтов Генрих Саулович читать все книги автора по порядку
Альтов Генрих Саулович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.