Большая Советская Энциклопедия (ЭЙ) - Большая Советская Энциклопедия "БСЭ"
Лит.: Bernštein В., Е. Einmann, Tallinn, 1956.

Э. Эйнманн. Портрет Р. Уутмаа. Уголь. 1965.
Эйнтховен Виллем
Э'йнтховен (Einthoven) Виллем (21.5.1860, Самаранг, о. Ява, — 29. 9.1927, Лейден, Нидерланды), нидерландский физиолог. Окончил университет в Утрехте (1885). С 1885 профессор физиологии Лейденского университета. Основные труды по электрофизиологии. Математический анализ электрокардиограмм позволил Э. внести существенные уточнения в расшифровку электрических реакций сердца. В 1903 созданием струнного гальванометра Э. положил начало клинической электрокардиографии. Э. принадлежат идея трёх отведений токов сердца, схема треугольника (треугольник Э.), иллюстрирующая изменение высоты зубцов электрокардиограммы и их взаимодействие в зависимости от способа отведения, физиологическое объяснение каждого зубца и интервала электрокардиограммы. Предложил (1913) векторкардиографию . Один из первых исследователей в области нейроэлектрофизиологии. Выявил импульсную активность в т. н. депрессорном нерве, зарегистрировал импульсную активность в нервных путях симпатической системы. Нобелевская премия (1924).
Соч.: Neues Galvanometer, «Annalen der Physik», 1903, Bd 12; Über die Deutung des Elektrokardiogramms, «Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere», 1913, Bd l49; Das Saitengalvanometer und die Messung der Aktionsströme des Herzens, в кн.: Les prix Nobel en 1924—1925, Stockh., 1926.
Лит.: Самойлов А. Ф., Воспоминания о профессоре Вильгельме Эйнтховене, в его кн.: Избр. статьи и речи, М.— Л., 1946; Wenckebach (Wien), W. Einthoven, «Deutsche medizinische Wochenschrift», 1927, Jg 53, № 51, S. 2176.
Л. В. Соколова.
«Эйнхейт»
«Э'йнхейт» («Einheit»), журнал, издаваемый ЦК Социалистической единой партии Германии; см. «Айнхайт» .
Эйнштейн Альберт
Эйнште'йн (Einstein) Альберт (14.3.1879, Ульм, Германия, — 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квантовой теории и статистической физики. С 14 лет вместе с семьей жил в Швейцарии. По окончании Цюрихского политехникума (1900) работал учителем сначала в Винтертуре, затем в Шафхаузене. В 1902 получил место эксперта в федеральном патентном бюро в Берне, где работал до 1909. В эти годы Э. были созданы специальная теория относительности, выполнены исследования по статистической физике, броуновскому движению, теории излучения и др. Работы Э. получили известность, и в 1909 он был избран профессором Цюрихского университета, затем Немецкого университета в Праге (1911—12). В 1912 возвратился в Цюрих, где занял кафедру в Цюрихском политехникуме. В 1913 был избран членом Прусской и Баварской АН и в 1914 переехал в Берлин, где был директором физического института и проф. Берлинского университета. В берлинский период Э. завершил создание общей теории относительности, развил далее квантовую теорию излучения. За открытие законов фотоэффекта и работы в области теоретической физики Э. была присуждена Нобелевская премия (1921). В 1933 он был вынужден покинуть Германию, впоследствии в знак протеста против фашизма отказался от германского подданства, вышел из состава академии и переехал в Принстон (США), где стал членом Института высших исследований. В этот период Э. пытался разработать единую теорию поля и занимался вопросами космологии.
Работы по теории относительности. Главное научное достижение Э. — теория относительности, которая по существу является общей теорией пространства, времени и тяготения. Господствовавшие до Э. представления о пространстве и времени были сформулированы И. Ньютоном в конце 17 в. и не вступали в явное противоречие с фактами, пока развитие физики не привело к появлению электродинамики и вообще к изучению движений со скоростями, близкими к скорости света. Уравнения электродинамики (Максвелла уравнения ) оказались несовместимыми с уравнениями классической механики Ньютона. Противоречия особенно обострились после осуществления Майкельсона опыта , результаты которого не могли быть объяснены в рамках классической физики.
Специальная, или частная, теория относительности, предметом которой является описание физических явлений (и в том числе распространения света) в инерциальных системах отсчёта, была опубликована Э. в 1905 в почти завершенном виде. Одно из её основных положений — полная равноправность всех инерциальных систем отсчёта — делает бессодержательными понятия абсолютного пространства и абсолютного времени ньютоновской физики. Физический смысл сохраняют лишь те выводы, которые не зависят от скорости движения инерциальной системы отсчёта. На основе этих представлений Э. вывел новые законы движения, сводящиеся в случае малых скоростей к законам Ньютона, а также дал теорию оптических явлений в движущихся телах. Обращаясь к гипотезе эфира, он приходит к выводу, что описание электромагнитного поля не требует вообще какой-либо среды и что теория оказывается непротиворечивой, если помимо принципа относительности ввести и постулат о независимости скорости света от системы отсчёта. Глубокий анализ понятия одновременности и процессов измерения интервалов времени и длины (частично проведённый также А. Пуанкаре ) показал физическую необходимость сформулированного постулата. В том же (1905) году Э. опубликовал статью, где показал, что масса тела m пропорциональна его энергии Е , и в следующем году вывел знаменитое соотношение Е = mc2 (с — скорость света в вакууме). Большое значение для завершения построения специальной теории относительности имела работа Г. Минковского о четырёхмерном пространстве—времени. Специальная теория относительности стала необходимым орудием физических исследований (например, в ядерной физике и физике элементарных частиц), её выводы получили полное экспериментальное подтверждение.
Специальная теория относительности оставляла в стороне явление тяготения. Вопрос о природе гравитации, а также об уравнениях гравитационного поля и законах его распространения не был в ней даже поставлен. Э. обратил внимание на фундаментальное значение пропорциональности гравитационной и инертной масс (принцип эквивалентности). Пытаясь согласовать этот принцип с инвариантностью четырёхмерного интервала , Э. пришёл к идее зависимости геометрии пространства — времени от материи и после долгих поисков вывел в 1915—16 уравнение гравитационного поля (уравнение Эйнштейна, см. Тяготение ). Эта работа заложила основы общей теории относительности.
Э. сделал попытку применить своё уравнение к изучению глобальных свойств Вселенной. В работе 1917 он показал, что из принципа её однородности можно получить связь между плотностью материи и радиусом кривизны пространства — времени. Ограничиваясь, однако, статической моделью Вселенной, он был вынужден ввести в уравнение отрицательное давление (космологическую постоянную), чтобы уравновесить силы притяжения. Верный подход к проблеме был найден А. А. Фридманом , который пришёл к идее расширяющейся Вселенной. Эти работы положили начало релятивистской космологии.
В 1916 Э. предсказал существование гравитационных волн, решив задачу о распространении гравитационного возмущения. Тем самым было завершено построение основ общей теории относительности.
Общая теория относительности объяснила (1915) аномальное поведение орбиты планеты Меркурий, которое оставалось непонятным в рамках ньютоновской механики, предсказала отклонение луча света в поле тяготения Солнца (обнаружено в 1919—22) и смещение спектральных линий атомов, находящихся в поле тяготения (обнаружено в 1925). Экспериментальное подтверждение существования этих явлений стало блестящим подтверждением общей теории относительности.
Похожие книги на "Большая Советская Энциклопедия (ЭЙ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.