Большая Советская Энциклопедия (ДИ) - Большая Советская Энциклопедия "БСЭ"
Лит. см. при ст. Земельная рента.
И. Н. Буздалов.
Дифференциально-диагностические среды
Дифференциа'льно-диагности'ческие сре'ды, специальные смеси питательных веществ (см. Питательные среды), на которых выращивают микроорганизмы для определения их видовой принадлежности. К Д.-д. с. относятся белковые среды, применяемые для определения гемолитической и протеолитической способности микробов; среды, содержащие углеводы и индикаторы изменения кислотности (в результате утилизации микробами этих соединений); среды, содержащие вещества, служащие источником питания только для определённых видов бактерий, и др.
Дифференциальное исчисление
Дифференциа'льное исчисле'ние, раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 в.). Они сформулировали основные положения Д. и. и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Д. и. развивается в тесной связи с интегральным исчислением, вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587).
Д. и. зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (числовая прямая), функция, предел, непрерывность. Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Д. и. состоит в изучении функций в малом. Точнее: Д. и. даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Д. и.: производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них — определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа.
Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt2/2, где s — пройденный путь с начала падения (в метрах), t — время падения (в секундах), g — постоянная величина, ускорение свободного падения, g » 9,81 м/сек2. За первую секунду падения тело пройдёт около 4,9 м, за вторую — около 14,7 м, а за десятую — около 93,2 м, т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t, но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна

Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt, которую называют скоростью движения в момент времени t. Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.
В общем случае эти вычисления надо проводить для любого момента времени t, промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t). Тогда средняя скорость движения за промежуток времени от t до t + Dt даётся формулой Ds/Dt, где Ds = f (t + Dt) — f (t), а скорость движения в момент времени t равна

Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t, а не функцией интервала (t, t + Dt). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.
К выражению типа (*) приводит и задача (см. рис.) построения касательной к плоской кривой в некоторой её точке М. Пусть кривая Г есть график функции у = f (x). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла a, образованного касательной с осью Ox. Обозначим через x абсциссу точки М, а через x1 = x + Dх — абсциссу точки M1. Угловой коэффициент секущей MM1 равен

где Dy = M1N = f (x + Dx) — f (x) — приращение функции на отрезке [x, x1]. Определяя касательную в точке М как предельное положение секущей MM1, когда x1 стремится к x, получаем

Отвлекаясь от механического или геометрического содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f (x) в точке х называется предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что

С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Например, сила тока определяется как предел
Похожие книги на "Большая Советская Энциклопедия (ДИ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.