Большая Советская Энциклопедия (ИН) - Большая Советская Энциклопедия "БСЭ"
Рассматривая множество прямых, пересекающих (каждая в двух точках) контур некоторого выпуклого многоугольника, можно вывести, что мера рассматриваемого множества равна просто периметру.
Переходя, наконец, к множеству прямых, пересекающих выпуклую замкнутую линию («овал»), нетрудно установить, что на плоскости мерой множества прямых, пересекающих данную выпуклую линию, должна быть длина этой линии.
В задаче Бюффона имеют в качестве меры множества благоприятных случаев удвоенную длину (2l ) иглы, а для меры множества возможных случаев — длину (ph ) окружности диаметра h ; поэтому искомая вероятность р = 2l/ ph . Этот результат не раз проверялся на опытах с бросанием иглы. В одном из таких опытов было произведено 5000 бросаний; при l = 36 мм , h = 45 мм получилась частота пересечений 0,5064, что даёт приближённое значение для p = 3,1596.
С некоторыми видоизменениями изложенная теория может быть перенесена на множества прямых, пересекающих невыпуклые контуры. Вообще, для двухпараметрических множеств прямых на плоскости мера (m) может быть определена формулой m = òòd rd j, где r, j — полярные координаты проекции полюса на прямую. Если прямая задана уравнением ux + uy = 1 (x , y — прямоугольные координаты точки), то

В конце 19 — начале 20 вв. исследования по И. г. ещё связаны с геометрическими вероятностями (работы английского математика М. Крофтона, французского математика А. Пуанкаре), но уже в работе французского математика Э. Картана (1896) они входят в общую теорию интегральных инвариантов, а в 20-х гг. 20 в. складываются в самостоятельную теорию с разнообразными приложениями: к геометрии «в целом», прежде всего к изучению выпуклых областей, к геометрической оптике и теории излучения.
Лит.: Бляшке В., Лекции по интегральной геометрии, пер. с нем., «Успехи математических наук», 1938, в. 5; Вlaschke W., Vorlesungen über Integralgeometrie, H. 2. B.—Lpz., 1937.
Я. С. Дубнов.
Интегральная кривая
Интегра'льная крива'я, кривая, изображающая геометрически решение дифференциального уравнения или системы дифференциальных уравнений. См. Дифференциальные уравнения .
Интегральная показательная функция
Интегра'льная показа'тельная фу'нкция, специальная функция, определяемая интегралом

Этот интеграл не выражается в конечной форме через элементарные функции. Если x > 0, то интеграл понимается в смысле главного значения:

Лит. см. при статье Интегральный логарифм .
Интегральная схема
Интегра'льная схе'ма, интегральная микросхема, микроминиатюрное электронное устройство, все или часть элементов которого нераздельно связаны конструктивно и соединены между собой электрически. Различают 2 основных типа И. с.: полупроводниковые (ПП) и плёночные.
ПП И. с. (рис. 1 ) изготавливают из особо чистых ПП материалов (обычно кремний, германий), в которых перестраивают саму решётку кристаллов так, что отдельные области кристалла становятся элементами сложной схемы. Маленькая пластинка из кристаллического материала размерами ~1 мм2 превращается в сложнейший электронный прибор, эквивалентный радиотехническому блоку из 50—100 и более обычных деталей. Он способен усиливать или генерировать сигналы и выполнять многие другие радиотехнические функции.
Технология изготовления ПП И. с. обеспечивает одновременную групповую обработку сразу большого количества схем. Это определяет в значительной степени идентичность схем по характеристикам. ПП И. с. имеют высокую надёжность за счёт использования планарного процесса изготовления и значительного сокращения числа микросоединений элементов в процессе создания схем.
ПП И. с. развиваются в направлении всё большей концентрации элементов в одном и том же объёме ПП кристалла, т. е. в направлении повышения степени интеграции И. с. Разработаны И. с., содержащие в одном кристалле сотни и тысячи элементов. В этом случае И. с. превращается в большую интегральную систему (БИС), которую невозможно разрабатывать и изготовлять без использования электронных вычислительных машин высокой производительности.
Плёночные И. с. создаются путём осаждения при низком давлении (порядка 1×10-5мм рт. ст. ) различных материалов в виде тонких (толщиною < 1 мкм ) или толстых (толщиной > 1 мкм ) плёнок на нагретую до определённой температуры полированную подложку (обычно из керамики). В качестве материалов применяют алюминий, золото, титан, нихром, окись тантала, моноокись кремния, титанат бария, окись олова и др. Для получения И. с. с определёнными функциями создаются тонкоплёночные многослойные структуры осаждением на подложку через различные маски (трафареты) материалов с необходимыми свойствами. В таких структурах один из слоев содержит микрорезисторы, другой — микроконденсаторы, несколько следующих — соединительные проводники тока и другие элементы. Все элементы в слоях имеют между собой связи, характерные для конкретных радиотехнических устройств.
Плёночные элементы распространены в гибридных И. с. (рис. 2 ). В этих схемах на подложку сначала наносятся в виде тонких или толстых плёнок пассивные элементы (резисторы, конденсаторы, проводники тока), а затем с помощью микроманипуляторов монтируют активные элементы — бескорпусные ПП микроэлементы (транзисторы и диоды).
По своим конструктивным и электрическим характеристикам ПП и гибридные И. с. дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах. В целях защиты от внешних воздействий И. с. выпускают в защитных корпусах (рис. 3 ). По количеству элементов различают И. с.: 1-й степени интеграции (до 10 элементов), 2-й степени интеграции (от 10 до 100) и т. д.
Размеры отдельных элементов И. с. очень малы (порядка 0,5—10 мкм ) и подчас соизмеримы с размерами пылинок (1—100 мкм ). Поэтому производство И. с. осуществляется в особо чистых условиях. О технологических процессах изготовления И. с. см. в ст. Микроэлектроника .
Создание И. с. развивается по нескольким направлениям: гибридные И. с. с дискретными активными элементами; ПП И. с., выполненные в монолитном блоке ПП материала; совмещенные И. с., в которых активные элементы выполнены в монолитном блоке ПП материала, а пассивные элементы нанесены в виде тонких плёнок; плёночные И. с., в которых активные и пассивные элементы нанесены на подложку в виде тонких плёнок. О применении И. с. см. в ст. Интегральная электроника .
Лит.: Колосов Д. А., Горбунов Ю. И., Наумов Ю. Е., Полупроводниковые твердые схемы, М., 1965; Интегральные схемы. Принципы конструирования и производства, пер, с англ., под ред. А. А. Колосова, М., 1968; Интегральные схемы. Основы проектирования и технологии, пер. с англ., под ред. К. И. Мартюшова, М., 1970.
И. Е. Ефимов.

Рис. 1. Поперечное сечение и электрическая схема полупроводниковой интегральной схемы. На рис. сгущенными точками показаны слои проводников тока из алюминия; разреженными точками показаны слои полупроводника из двуокиси кремния; косыми линиями показаны слои кремния с проводимостью n, с повышенной проводимостью n+ и р — типов: участок полупроводника (подложка )с проводимостью р — типа а образует конденсатор б, транзистор в, резистор г; цифрами отмечены участки интегральной схемы, соответственно обозначенные на электрической схеме.
Похожие книги на "Большая Советская Энциклопедия (ИН)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.