Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ"
2) Комплексные числа окончательно утвердились в математике на рубеже 18—19 вв. только вследствие сопоставления их с точками плоскости, т. е. путём построения «комплексной плоскости». В теории функций комплексного переменного геометрическими методам отводится существенная роль. Само понятие аналитической функции w = f (z) комплексного переменного может быть определено чисто геометрически: такая функция есть конформное отображение плоскости z (или области плоскости z) в плоскость w. Понятия и методы римановой Г. находят применение в теории функций нескольких комплексных переменных.
3) Основная идея функционального анализа состоит в том, что функции данного класса (например, все непрерывные функции, заданные на отрезке [0,1]) рассматриваются как точки «функционального пространства», причём отношения между функциями истолковываются как геометрические отношения между соответствующими точками (например, сходимость функций истолковывается как сходимость точек, максимум абсолютной величины разности функций — как расстояние, и т.п.). Тогда многие вопросы анализа получают геометрическое освещение, оказывающееся во многих случаях очень плодотворным. Вообще, представление тех или иных математических объектов (функций, фигур и др.) как точек некоторого пространства с соответствующим геометрическим толкованием отношений этих объектов является одной из наиболее общих и плодотворных идей современной математики, проникшей почти во все её разделы.
4) Г. оказывает влияние на алгебру и даже на арифметику — теорию чисел. В алгебре используют, например, понятие векторного пространства. В теории чисел создано геометрическое направление, позволяющее решать многие задачи, едва поддающиеся вычислительному методу. В свою очередь нужно отметить также графические методы расчётов (см. Номография) и геометрические методы современной теории вычислений и вычислительных машин.
5) Логическое усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматического метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.
В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, математическая логика и некоторые др.
Лит.:Основные классические работы. Евклид, Начала, пер. с греч., кн. 1—15, М. — Л.,1948—50; Декарт Р., Геометрия, пер. с латин., М. — Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М. — Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz — Р., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Полн. собр. соч., т. 1—3, М. — Л., 1946—51; Больаи Я., Appendix. Приложение,..., пер. с латин., М. — Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М. — Л., 1948.
История. Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen über die Geschichte der Mathematik, Bd 1—4, Lpz., 1907—08.
Курсы. а) Основания геометрии. Каган В. Ф., Основания геометрии, ч. 1, М. — Л., 1949; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Погорелов А. В., Основания геометрии, 3 изд., М., 1968.
б) Элементарная геометрия. Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1, 3 изд., М., 1948, ч. 2, М., 1938; Погорелов А. В., Элементарная геометрия, М., 1969.
в) Аналитическая геометрия. Александров П. С., Лекции по аналитической геометрии..., М., 1968; Погорелов А. В., Аналитическая геометрия, 3 изд., М., 1968.
г) Дифференциальная геометрия. Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Погорелов А. В., Дифференциальная геометрия, М., 1969.
д) Начертательная и проективная геометрия. Глаголев Н. А., Начертательная геометрия, 3 изд., М. — Л., 1953; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.
е) Риманова геометрия и её обобщения. Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М. — Л., 1964; Норден А. П., Пространства аффинной связности, М. — Л., 1950; Картан Э., Геометрия римановых пространств, пер. с франц., М. — Л., 1936; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948.
Некоторые монографии по геометрии. Федоров Е. С., Симметрия и структура кристаллов. Основные работы, М., 1949; Александров А. Д., Выпуклые многогранники, М. — Л., 1950; его же, Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Буземан Г., Геометрия геодезических, пер. с англ., М., 1962; его же, Выпуклые поверхности, пер. с англ., М., 1964; Картан Э., Метод подвижного репера, теория непрерывных групп и обобщенные пространства, пер. с франц., М. — Л., 1936; Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, М. — Л., 1948; его же, Проективно-дифференциальная геометрия, М. — Л., 1937; его же, Теория конгруенций, М. — Л., 1950; Схоутен И. А., Стройк Д. Дж., Введение в новые методы дифференциальной геометрии, пер. с англ., т. 1—2, М. — Л., 1939—48; Номидзу К., Группы Ли и дифференциальная геометрия, пер. с англ., М., 1960; Милнор Дж., Теория Морса, пер. с англ., М., 1965.
А. Д. Александров.
Геометрия резца
Геоме'трия резца', форма и углы заточки режущей части резца. Г. р. влияет на характер процесса резания материалов, на его производительность и экономичность, качество обработанной детали, стойкость (время работы до нормального затупления) резца и т.п. Все определения по Г. р., приводимые ниже, справедливы для др. режущих инструментов (свёрл, протяжек, фрез). Режущую часть составляют рабочие поверхности (рис. 1): передняя, по которой сходит образующаяся в процессе резания стружка, задняя главная и задняя вспомогательная, обращенные к обрабатываемой поверхности заготовки. Рабочие поверхности при пересечении образуют режущие кромки.
Главная режущая кромка, выполняющая основную работу при резании, образуется в результате пересечения передней и главной задней поверхности; вспомогательная режущая кромка — при пересечении передней и вспомогательной задней поверхности. Место сопряжения главной и вспомогательной режущих кромок называется вершиной резца. Вершина резца — наиболее ослабленная его часть, определяющая прочность режущей части кромки резца в целом; поэтому для повышения прочности вершина резца делается либо закруглённой (с радиусом 0,5—2 мм), либо в виде прямолинейной переходной режущей кромки (длиной 0,5—3 мм).
Элементы режущей части резца подразделяют на статические, определяющие углы заточки инструмента, и кинематические, зависящие от характера процесса резания и от установки резца. Углы заточки определяют форму режущей части при проектировании, изготовлении и контроле резца. Режущая часть резца имеет форму клина, заточенного под определёнными углами. Для определения углов установлены следующие координатные плоскости: плоскость резания и основная плоскость. Плоскость резания — это плоскость, касательная к поверхности резания и проходящая через главную режущую кромку. Основная плоскость — плоскость, параллельная продольной (параллельной оси заготовки) и поперечной (перпендикулярной оси заготовки) подачам резца. Эти координатные плоскости взаимно перпендикулярны. Главные углы резца определяются в главной секущей плоскости, перпендикулярной проекции главной режущей кромки на основную плоскость (рис. 2). Главный задний угол a — угол между главной задней поверхностью резца и плоскостью резания. При выборе заднего угла, во избежание трения задней поверхности резца об обрабатываемую поверхность и поверхность резания, учитывают величину подачи: чем она больше, тем больше задний угол. Угол заострения b — угол между передней и главной задней поверхностями резца. Главный передний угол g — угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания. Выбор переднего угла зависит прежде всего от физико-механических свойств обрабатываемого материала. Чем больше передний угол, тем легче процесс образования стружки, тем меньше усилие резания и затрачиваемая мощность. Чем выше твёрдость обрабатываемого материала, тем меньшие значения передних углов резца принимают для его обработки. Угол резания d — угол между передней поверхностью резца и плоскостью резания. Главный угол в плане j— угол между направлением подачи и проекцией главной режущей кромки на основную плоскость; вспомогательный угол в плане j1 — угол между направлением подачи и проекцией вспомогательной режущей кромки на основную плоскость. Углы j и j1 определяют, с одной стороны, условия работы режущей кромки, а с другой — распределение нагрузки от силы резания. Чем меньше угол в плане, тем (при неизменной глубине резания и подаче) меньше тепловая и силовая нагрузки на единицу длины главной режущей кромки, а следовательно, лучше условия работы. Уменьшение угла в плане ниже оптимального значения может привести к чрезмерной деформации обрабатываемой заготовки, к снижению точности обработки и вибрациям. Угол при вершине в плане e — угол между проекциями режущих кромок на основную плоскость: e = 180°— (j +j1). Угол в плане переходной (прямолинейной) режущей кромки j — угол между направлением подачи и проекцией переходной режущей кромки на основную плоскость: обычно j0 = j /2. Угол наклона главной режущей кромки l — угол, заключённый между режущей кромкой и линией, проведённой через вершину резца параллельно основной плоскости; угол l положительный, когда вершина резца — наинизшая точка режущей кромки; отрицательный, когда вершина резца — наивысшая точка, и равен нулю, если главная режущая кромка параллельна основной плоскости. Угол l оказывает влияние на направление схода стружки.
Похожие книги на "Большая Советская Энциклопедия (ГЕ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.