Большая Советская Энциклопедия (ПА) - Большая Советская Энциклопедия "БСЭ"
Параметрическое бурение
Параметри'ческое буре'ние, проведение скважин в нефтегазоносных областях с целью получения геолого-геофизических параметров, необходимых для разведки. П. б.— составная часть первой стадии поискового этапа. Выбор места заложения скважин производится по данным региональных геолого-геофизических исследований. Глубина скважин обычно составляет 3—5 км , иногда свыше 7 км . Проходка скважин с отбором керна составляет 10—20% от общей их глубины. По керну определяют физические параметры (отражающие, преломляющие, плотностные, электрические, магнитные, акустические и др. свойства), литологический состав горных пород, уточняют стратиграфические границы и т.д.
В результате П. б. и всех др. региональных исследований выявляются особенности геологического строения земной коры и зоны, благоприятные для скопления нефти, газа и других полезных ископаемых, а также определяются основные направления их поисков. См. также Бурение .
Параметрическое возбуждение и усиление электрических колебаний
Параметри'ческое возбужде'ние и усиле'ние электри'ческих колеба'ний, метод возбуждения и усиления электромагнитных колебаний, в котором усиление мощности происходит за счёт энергии, затрачиваемой на периодическое изменение величины реактивного параметра (индуктивности L или ёмкости С ) колебательной системы. На возможность использования параметрических явлений для усиления и генерации электрических колебаний впервые указали Л. И. Мандельштам и Н. Д. Папалекси , однако практическое применение параметрический метод нашёл лишь в 50-е гг. 20 в., когда были созданы параметрические полупроводниковые диоды с управляемой ёмкостью и разработаны малошумящие параметрические усилители СВЧ.
Рассмотрим принцип параметрического усиления и генерации на примере простейшей системы — колебательного контура , состоящего из постоянных сопротивления R, индуктивности L и ёмкости С , которая периодически изменяется во времени (рис. 1 ). При резонансе (
q = q sinwc t = CQE sinwc t. (1)
Здесь E — амплитуда сигнала,
W = (q 2 /2C ) = (q 2 /4C ) (1-cos 2wc t ). (2)
Из (2) видно, что W изменяется с частотой, равной удвоенной частоте сигнала. Если в момент, когда q = q , ёмкость конденсатора С скачком изменить на DС (например, раздвинуть пластины конденсатора), то заряд q не успеет измениться, а энергия W изменится на величину (если DС/С << 1):
DW = -W DC/C . (3)
Отсюда следует, что результирующее увеличение энергии в контуре при периодическом изменении С максимально, если уменьшать ёмкость в моменты, когда q максимально, а возвращать величину емкости к исходному значению при q = 0. Это означает, что если изменять С с частотой wн = 2wс и с определённой фазой (рис. 2 ), то устройство, изменяющее С , как бы «накачивает энергию» в контур дважды за период колебаний. Если, наоборот, увеличивать С в моменты минимальных значений q, то колебания в контуре будут ослабляться. В более общем виде условие эффективной накачки имеет вид: wн = 2wс /n, где n = 1, 2, 3,... и т.д. При n = 1 С изменяется каждые четверть периода сигнала (Т с /4), при бо'льших n— через время, равное nT c / 2.
Простейший одноконтурный параметрический усилитель обычно представляет собой колебательную систему, где ёмкость С изменяется в результате воздействия гармонического напряжения от генератора накачки на полупроводниковый параметрический диод, ёмкость которого зависит от величины приложенного к нему напряжения. Конструктивно параметрический усилитель СВЧ представляет собой «волноводный крест» (рис. 3 ); по одному из волноводов (см. Радиоволновод ) распространяется. усиливаемый сигнал, по другому — сигнал накачки. В пересечении волноводов помещается параметрический диод. Коэффициент усиления по мощности приближённо равен:
где m = (С макс — С мин )/(С макс + С мин ) называется глубиной изменения ёмкости. При (m/ 2) Q ® 1 коэффициент усиления неограниченно растет, при (m /2) Q ³ 1 система превращается в параметрический генератор (см. Параметрическое возбуждение колебаний ). Основной недостаток одноконтурного параметрического усилителя — зависимость К ус от соотношения между фазами усиливаемого сигнала и сигнала накачки.
Этого недостатка нет у параметрических усилителей, содержащих два контура и больше (рис. 4 ). В двухконтурном параметрическом усилителе частота и фаза колебаний во втором («холостом») контуре автоматически устанавливаются так, чтобы удовлетворить условиям эффективной накачки энергии. Если холостой контур настроен на частоту (w2 = wн — wс , то энергия накачки расходуется на усиление колебаний в обоих контурах. В этом случае K ~
Кроме периодического изменения ёмкости с помощью параметрических диодов, применяются и др. виды параметрического воздействия. Периодическое изменение индуктивности L осуществляют, используя изменение эквивалентной индуктивности у ферритов и сверхпроводников. Периодическое изменение ёмкости С получают, используя зависимость диэлектрической проницаемости диэлектриков от электрического поля, структуры металл — окисел — полупроводник (поверхностные варакторы) и др. методами (см. Криоэлектроника ). В электроннолучевых параметрических усилителях используются нелинейные свойства электронного луча, модулированного по плотности.
Наряду с резонаторными параметрическими усилителями применяются параметрические усилители бегущей волны. Электромагнитная волна сигнала, распространяясь по волноводу, последовательно взаимодействует с каждым из расположенных на пути параметрических диодов (или др. нелинейных элементов).
Похожие книги на "Большая Советская Энциклопедия (ПА)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.