Большая Советская Энциклопедия (ПО) - Большая Советская Энциклопедия "БСЭ"
Определение равновесных концентраций носителей тока в П. основывается на распределении Ферми (см. Статистическая физика ) электронов по энергетическим состояниям (в зонах и на примесных уровнях). Вероятность f того, что состояние с энергией E занято электроном, даётся формулой:
Здесь EF — уровень Ферми — энергия, отделяющая уровни преимущественно заполненные (f > 1 /2 ) от преимущественно незаполненных (f < 1 /2 ).
Если уровень Ферми лежит в запрещенной зоне на расстоянии > kT от дна зоны проводимости и от потолка валентной зоны, то в зоне проводимости f << 1, т. е. мало электронов, а в валентной зоне 1 — f << 1, т. е. мало дырок. В этом случае принято говорить, что электроны и дырки невырождены, в отличие от случая вырождения, когда уровень Ферми лежит внутри одной из разрешенных зон, например в зоне проводимости на расстоянии >> kT от её дна. Это означает, что все состояния в этой зоне от дна до уровня Ферми заполнены носителями тока с вероятностью f (E ) » 1.
Положение уровня Ферми зависит от температуры и легирования. В объёме пространственного однородного П. оно определяется условием сохранения полного числа электронов или, иными словами, условием электронейтральности:
n + Na- = р + N+d (10)
Здесь Nd — концентрация ионизованных доноров, Na- — акцепторов, захвативших электрон.
В сильно легированных П. концентрация носителей остаётся постоянной и равной (Nd — Na ) при всех температурах вплоть до области собственной проводимости, где они не отличаются от др. П. (кривая 2, рис. 5 ). При низких температурах носители в сильно легированных П. вырождены, и такие П. формально следовало бы отнести к плохим металлам. Они действительно обнаруживают ряд металлических свойств, например сверхпроводимость (SrTiO3 , GeTe, SnTe) при очень низких температурах.
Неравновесные носители тока . Важной особенностью П., определяющей многие их применения, является возможность относительно легко изменять в них концентрации носителей по сравнению с их равновесными значениями, т. е. вводить дополнительные, неравновесные (избыточные) электроны и дырки. Генерация избыточных носителей возникает под действием освещения, облучения потоком быстрых частиц, приложения сильного электрического поля и, наконец, инжекции («впрыскивания») через контакты с др. П. или металлом.
Фотопроводимость полупроводников — увеличение электропроводности П. под действием света; как правило, обусловлена появлением дополнительных неравновесных носителей в результате поглощения электронами квантов света с энергией, превышающей энергию их связи. Различают собственную и примесную фотопроводимости. В первом случае фотон поглощается валентным электроном, что приводит к рождению пары электрон — дырка. Очевидно, такой процесс может происходить под действием света с длиной волны, соответствующей области собственного поглощения П.:
Явление фотопроводимости позволяет за короткое время (~ мксек или ~ нсек ) изменять электропроводность П. в очень широких пределах, а также даёт возможность создавать высокие концентрации носителей тока в П., в которых из-за относительно большой DE и отсутствия подходящих примесей не удаётся получить заметных равновесных концентраций носителей. Использование фотопроводимости П. с разными DE и глубиной примесных уровней (Si, Te, InSb, PbS, CdS, РЬТе, Ge, легированный Zn или Au и т.д.) позволяет создавать высокочувствительные приёмники света для различных областей спектра от далёкой инфракрасной до видимой (см. Инфракрасное излучение , Фотопроводимость ).
Прохождение быстрых частиц через полупроводники . Значит. доля энергии частицы (~30%) при этом тратится в конечном счёте на создание электронно-дырочных пар, число которых, т. о., порядка отношения DE к энергии частицы. Для частиц с энергиями от 10 кэв до 10 Мэв это отношение ~104 — 107. Явление может использоваться для счёта и измерения энергии быстрых частиц (см. Полупроводниковый детектор).
Рекомбинация. Захват свободных носителей примесями или дефектами . Рекомбинацией называется любой процесс, приводящий к переходу электрона из зоны проводимости в валентную зону с заполнением какого-либо дырочного состояния, в результате чего происходит исчезновение электрона и дырки. Переход электрона из зоны проводимости в состояние, локализованное вблизи примеси или дефекта, называют его захватом. Захват дырки означает переход электрона с примесного уровня в незанятое электронами состояние в валентной зоне. В условиях термодинамического равновесия тепловая генерация носителей и ионизация доноров и акцепторов уравновешивают процессы рекомбинации и захвата, а скорости этих взаимно обратных процессов находятся как раз в таком соотношении, которое приводит к распределению Ферми для электронов по энергиям.
Если же в П. появляются неравновесные носители, то число актов рекомбинации и захвата возрастет. Т. о., после прекращения внешнего воздействия рекомбинация происходит интенсивнее, чем генерация, и концентрация носителей начинает убывать, приближаясь к своему равновесному значению. Среднее время t, которое существуют неравновесные носители, называется временем их жизни. Оно обратно пропорционально быстроте рекомбинации или захвата примесями. Время жизни t носителей в П. варьируется от 10-3сек до 10-10сек. Даже в одном и том же П. в зависимости от температуры, содержания примесей или дефектов, концентрации неравновесных носителей значения t могут изменяться на несколько порядков.
Рекомбинация и захват всегда означают переход носителя на более низкие уровни энергии (в валентную зону или запрещенную). Различные механизмы рекомбинации отличаются друг от друга тем, куда и каким образом передаётся выделяемая при таком переходе энергия. В частности, она может излучаться в виде кванта света. Такая излучательная рекомбинация наблюдается в любом П. Полное число актов излучательной рекомбинации в сек пропорционально произведению p-n и при небольших концентрациях носителей этот механизм рекомбинации мало эффективен. Однако при больших концентрациях (~1017см3 ) некоторые П. становятся эффективными источниками света (рекомбинационное излучение) в узком диапазоне длин волн, близких к lмакс . Ширина спектра ~kT, обусловленная различием энергии рекомбинирующих носителей, гораздо меньше средней энергии фотонов. Используя разные П., можно создавать источники света почти любой длины волны в видимой и близкой инфракрасной областях спектра. Так, например, меняя в сплаве GaAs — GaP содержание GaP от 0 до 100%, удаётся перекрыть видимый спектр от красной до зелёной областей включительно.
Похожие книги на "Большая Советская Энциклопедия (ПО)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.