Большая Советская Энциклопедия (АТ) - Большая Советская Энциклопедия "БСЭ"
Некоторые А. воспринимаются на слух как сигналы, частота которых непрерывно уменьшается. Такие А. называются свистящими. Их особенность связана с механизмом распространения сверхдлинных волн. При распространении таких волн в волноводе, образованном нижней границей ионосферы и поверхностью Земли, происходит частичное «просачивание» их через ионосферу. Просочившиеся волны, распространяясь вдоль силовых линий магнитного поля Земли, удаляются от поверхности Земли на десятки тыс. км и затем снова возвращаются к Земле. Скорость их распространения зависит от частоты, высокочастотные составляющие сигнала распространяются с большей скоростью и приходят раньше. Это и приводит к возникновению на выходе приёмного устройства характерного свиста, высота тона которого непрерывно меняется.
Исследования А. дают сведения о механизме распространения сверхдлинных волн, а также о свойствах самых нижних и очень высоких областей ионосферы, в которых распространяются А. Для расчётов линий радиосвязи построены специальные карты и номограммы, по которым можно определить уровень А. в каждой точке Земли.
Лит.: Альперт Я. Л., Распространение радиоволн и ионосфера, М., 1960; Долуханов М. П., Распространение радиоволн, 2 изд., М., 1960; Краснушкин П. Е., Атмосферики, в кн.: Физический энциклопедический словарь, т. 1, М., 1960, с. 100—102.
М. Б. Виноградова.

Спектр радиоволн, излучаемых разрядом молнии; сплошная линия — спектр основного разряда, точечный пунктир — спектр предразряда, штриховой пунктир — суммарный спектр; f — частота радиоволн, Е — напряжённость электрического поля волны.
Атмосферная акустика
Атмосфе'рная аку'стика, раздел акустики, в котором изучаются распространение и генерация звука в реальной атмосфере и исследуется атмосфера акустическими методами. А. а. как метод исследования является также разделом физики атмосферы. Изучение распространения звука в атмосфере началось с зарождения акустики. В конце 17 —18 вв. У. Дарем (Англия) изучал зависимость скорости звука от скорости ветра, Бьянкони (Италия) и Ш. М. Кондамин (Франция) изучали влияние температуры на скорость звука. Большой вклад в исследования распространения звука в неоднородной движущейся среде внесли советские учёные Н. Н. Андреев и И. Г. Русаков (1934), Д. И. Блохинцев (1947).
Распространение звука в свободной атмосфере имеет ряд особенностей. Звуковые волны благодаря теплопроводности и вязкости воздуха поглощаются тем сильнее, чем выше частота звука и чем меньше плотность атмосферы. Поэтому резкие вблизи звуки выстрелов или взрывов на больших расстояниях становятся глухими. Неслышимые же звуки очень низких частот (т. н. инфразвуковых) с периодами от нескольких сек до нескольких мин затухают мало и могут распространяться на тысячи км и даже огибать несколько раз земной шар. Это даёт возможность, например, обнаруживать ядерные взрывы, являющиеся мощным источником таких волн.
Важные задачи А. а. связаны с явлениями, возникающими при распространении звука в атмосфере, которая представляет собой с точки зрения акустики движущуюся неоднородную среду. Температура и плотность атмосферы уменьшаются с увеличением высоты; на больших высотах температура снова возрастает. На эти регулярные неоднородности накладываются зависящие от метеорологических условий изменения значений температуры и ветра, а также их случайные турбулентные пульсации различных масштабов. Т. к. скорость ветра определяется температурой воздуха и звук «сносится» ветром, то все перечисленные неоднородности сильно влияют на распространение звука. Возникает искривление звукового луча — рефракция звука, в результате чего наклонный звуковой луч может вернуться к земной поверхности, образуя акустические зоны слышимости и зоны молчания, происходит рассеяние и ослабление звука на турбулентных неоднородностях, сильное поглощение звука на больших высотах и т. д.
Сложную обратную задачу приходится решать при акустическом зондировании атмосферы. Распределение температуры и ветра на больших высотах определяют по измерениям времени и направления прихода звуковых волн от наземных взрывов или взрывов бомб, сбрасываемых с ракеты. При исследовании турбулентности определяют температуру и скорость ветра, измеряя время распространения звука на небольших расстояниях; для получения необходимой точности пользуются ультразвуковыми частотами.
Большое значение получила проблема распространения промышленных шумов, в особенности ударных волн, возникающих при движении сверхзвуковых реактивных самолётов. Если атмосферные условия благоприятствуют фокусировке этих волн, то у земной поверхности давления могут достичь значений, опасных для сооружений и здоровья людей.
В атмосфере наблюдаются различные звуки естественного происхождения. Длительные раскаты грома происходят вследствие большой длины грозового разряда, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями. Некоторые геофизические явления — полярные сияния, магнитные бури, мощные землетрясения, ураганы, морские волнения — являются источниками звуковых и особенно инфразвуковых волн. Их исследование важно не только для геофизики, но, например, для заблаговременного штормового оповещения. Разнообразные слышимые шумы вызываются или срывом вихрей с различных препятствий (свист ветра) или колебаниями каких-либо предметов в потоке воздуха (гудение проводов, шелест листьев и т. п.).
Лит.: Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Блохинцев Д. И., Акустика однородной движущейся среды, М.—Л., 1946.
В. М. Бовшеверов.
Атмосферная оптика
Атмосфе'рная о'птика, раздел физики атмосферы, в котором изучаются оптические явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т.д. А. о. составляет часть физической оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для А. о. результаты были получены при решении проблем физической химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.
Изучение оптических свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. — разработка оптических методов зондирования, т. е. определения по измеренным оптическим свойствам воздуха, моря и суши других их физических характеристик.
Оптические явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят главным образом фотохимические реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается аэрономия. В данной статье они не рассматриваются.
Интерес к оптическим явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался русский геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и другими физическими явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптические признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптическими явлениями и погодой можно, лишь изучая природу оптических явлений и одновременно проникая в механизм физических явлений, вызывающих изменения погоды.
Похожие книги на "Большая Советская Энциклопедия (АТ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.