Большая Советская Энциклопедия (ВЕ) - Большая Советская Энциклопедия "БСЭ"
[a , b ] = — [b , а ], [(la ), b ] = l [a , b ],
[с , (a +b )] = [с , a ] + [с , b ], [a , [b , с ]] =b (a , с ) — с (a , b ),
([a , b ], [с , d ]) = (a , c )(b , d ) — (a , d )(b , c ).
Если в ортонормированном базисе i, j, k , образующем правую тройку, векторы a и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íX2 , Y2 , Z2 ý, то [a, b ] = íY1 Z2 — Y2 Z1 , Z1 X2 — Z2 X1 , X1 Y2 — X2 Y1 ý. Понятие векторного произведения связано с различными вопросами механики и физики. Например, скорость v точки М тела, вращающегося с угловой скоростью со вокруг оси l, равна [w, r ], где

Смешанным произведением векторов a, b и c называется скалярное произведение вектора [a, b ] на вектор с : ([a, b ], с ). Обозначается смешанное произведение символомabc . Смешанное произведение не параллельных одной плоскости векторов a , b и с численно равно объёму параллелепипеда, построенного на приведённых к общему началу векторах a , b и с , взятому со знаком плюс, если тройка a , b и с правая, и со знаком минус, если тройка левая. Если же векторы a , b и с параллельны одной плоскости, тоabc = 0 . Справедливо также следующее свойствоabc =bca =cab . Если координаты векторов a , b и с в ортонормированном базисе i, j, k , образующем правую тройку, соответственно равны íX1 , Y1 , Z1 ý, íX2 , Y2 , Z2 ý и íХ3 , Y3 , Z3 ý, то

Вектор-функции скалярных аргументов. В механике, физике, дифференциальной геометрии широко используется понятие вектор-функции одного или нескольких скалярных аргументов. Если каждому значению переменной t из некоторого множества ít ý ставится в соответствие по известному закону определённый вектор r , то говорят, что на множестве ít ý задана вектор-функция (векторная функция) r =r (t ). Так как вектор r определяется координатами íx, y, z ý, то задание вектор-функции r = r (t ) эквивалентно заданию трёх скалярных функций: х = x (t ), y = y (t ), z = z (t ). Понятие вектор-функции становится особенно наглядным, если обратиться к так называемому годографу этой функции, то есть к геометрическому месту концов всех векторов r (t ), приложенных к началу координат О (рис. 7 ). Если при этом рассматривать аргумент t как время, то вектор-функция r (t ) представляет собой закон движения точки М, движущейся по кривой L — годографу функции r (t ).
Для изучения вектор-функций важную роль играет понятие производной. Это понятие вводится следующим образом: аргументу t придаётся приращение Dt ¹ 0 и вектор Dr =r (t + Dt ) — r (t ) (на рис. 7 это вектор

(r1 , r2 )' = (r '1 , r2 ) + (r1 , r '2 ),
[r1 , r2 ]’ = [r '1 , r2 ] + [r1 , r '2 ].
В дифференциальной геометрии вектор-функции одного аргумента используются для задания кривых. Для задания поверхностей пользуются вектор-функциями двух аргументов.
Векторный анализ. В механике, физике и геометрии широко используются понятия скалярного и векторного поля. Температура неравномерно нагретой пластинки, плотность неоднородного тела представляют собой физические примеры соответственно плоского и пространственного скалярного поля. Векторное поле образует множество всех векторов скоростей частиц установившегося потока жидкости. Примерами векторных полей могут служить также поле силы тяжести, магнитное и электрическое напряжение электромагнитного поля.
Для математического задания скалярных и векторных полей используются соответственно скалярные и векторные функции. Ясно, что плотность тела представляет собой скалярную функцию точки, а поле скоростей частиц установившегося потока жидкости — векторную функцию точки. Математический аппарат теории поля обычно называют векторным анализом. Для геометрической характеристики скалярного поля используются понятия линий и поверхностей уровня. Линией уровня плоского скалярного поля называется линия, на которой функция, задающая поле, имеет постоянное значение. Аналогично определяется поверхность уровня пространственного поля. Примерами линии уровня могут служить изотермы — линии уровня скалярного поля температур неравномерно нагретой пластинки.
Обратимся к поверхности (линии) уровня скалярного поля, проходящей через данную точку М. При смещении по нормали к этой поверхности (линии) в точке М наблюдается максимальное изменение в этой точке функции f задающей поле. Это изменение характеризуется с помощью градиента скалярного поля. Градиент представляет собой вектор, направленный по нормали к поверхности (линии) уровня в точке М в сторону возрастания f этой точке. Величина градиента равна производной f указанном направлении. Обозначается градиент символом gradf . В базисе i, j k градиент grad f имеет координаты

для плоского поля координаты градиента равны

Градиент скалярного поля представляет собой векторное поле.
Похожие книги на "Большая Советская Энциклопедия (ВЕ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.