Большая Советская Энциклопедия (ИМ) - Большая Советская Энциклопедия "БСЭ"
Первое практическое применение импульсных режимов работы электрических устройств связано с изобретением русским учёным П. Л. Шиллингом электромагнитного телеграфа (1832), усовершенствованного русским академиком Б. С. Якоби и американским изобретателем С. Морзе. Изобретатель радио А. С. Попов для генерации радиоволн применил импульсный искровой передатчик (1895). В 1907 русский учёный Л. И. Мандельштам выдвинул идею использования изменяющихся по известному закону электрических величин для создания точного масштаба времени, которая была реализована в устройстве временной развёртки осциллографа; так был открыт способ исследования кратковременных импульсных процессов. В том же 1907 русский учёный Б. Л. Розинг впервые в мире использовал электроннолучевую трубку для приёма сигналов изображения. Этим было положено начало телевидению. В 1918 советский учёный М. А. Бонч-Бруевич разработал и исследовал «катодное реле», позволяющее скачком изменять силу тока электронных ламп и напряжение на их электродах. В 1919 в журнале «Annales de Physique» американские учёные Х. Абрагам и Е. Блох опубликовали статью с описанием др. подобного устройства — мультивибратора; тогда же американские учёные В. Иклс и Ф. Джордан разработали схему триггера; мультивибратор и триггер широко используются в современной И. т. В конце 20-х гг. в связи с распространением коротковолновой радиосвязи возникла необходимость измерения высоты ионизированных слоев атмосферы. Первая в СССР установка для импульсного измерения расстояний была создана в 1932 под рук. М. А. Бонч-Бруевича. Принципы работы этой установки впоследствии нашли применение в импульсной радиолокации. Быстрое развитие И. т. стимулировалось совершенствованием радиосвязи, телевидения, радиолокации, радионавигации, телеуправления, телеметрии, вычислительной техники. Этому способствовало также решение ряда теоретич. проблем, в том числе теории нелинейных и разрывных колебаний, разработанной советскими радиофизиками А. А. Андроновым, А. А. Виттом и С. Э. Хайкиным. Исключительно важно для совр. состояния и дальнейшего развития И. т. совершенствование полупроводниковой электроники и интегральных схем.
Лит.: Моругин Л. А., Глебович Г. В., Наносекундная импульсная техника, М., 1964; Магнитные генераторы импульсов, М., 1968;ГольденбергЛ.М., Теория и расчёт импульсных устройств на полупроводниковых приборах, М., 1969; Справочник по импульсной технике, под ред. В. Н. Яковлева, К., 1970; Алексенко А. Г., Основы микросхемотехники, М., 1971; Ицхоки Я. С., Овчинников Н. И., Импульсные цифровые устройства, М., [1972]; Миллман Я., Тауб Г., Импульсные и цифровые устройства, пер. с англ., М. — Л., 1960; Харли Р. Б., Логические схемы на транзисторах, пер. с англ., М., 1965; Чжоу В. Ф., Принципы построения схем на туннельных диодах, пер. с англ., М., 1966; Vabre I.-P., Electronique des impulsions, t. 3, P., 1970.
Я. С. Ицхоки.

Рис. 2. Электрические колебания сложной формы: а — пиковые; б — пилообразные.

Рис. 1. Импульсный сигнал из трёх прямоугольных импульсов.
Импульсная техника высоких напряжений
И'мпульсная те'хника высоких напряжений, область электротехники, предметом которой является получение, измерение и использование импульсов высоких напряжений (амплитудой от 102в до 107в) и импульсов сильных токов (амплитудой от 102а до 107а). Длительность импульсов варьируется в пределах от 10-1 до 10-10сек. Это могут быть одиночные импульсы или повторяющиеся с большой скважностью.
Импульсы высоких напряжений используются при испытании электротехнической аппаратуры, имитации внутренних и грозовых перенапряжений в электрической сети, для моделирования молниезащитных устройств и т. д. В экспериментальной физике импульсы высоких напряжений применяются для создания сильных импульсных электрических полей при исследовании процессов электрического пробоя, для получения кратковременных (10-7—10-6сек) вспышек рентгеновского излучения, для питания искровых камер, электронно-оптических преобразователей, Керра ячеек, в ускорителях заряженных частиц, для создания импульсных электронных и ионных пучков.
Импульсы напряжений амплитудой до 107в получают от генераторов импульсных напряжений (ГИН). Они содержат группу конденсаторов С (рис. 1), которые при зарядке от источника ПН соединены параллельно через сопротивления R. Когда напряжение на конденсаторах достигает требуемой величины, они с помощью искровых промежутков П включаются последовательно (схема Аркадьева — Маркса). Длительность фронта и спада импульса регулируется демпфирующими Rд и разрядным Rp сопротивлениями, ёмкостью Сф и ёмкостью нагрузки О.
Для получения импульсов с амплитудой 106в, длительностью фронта ~ 10-4сек и спада ~ 10-3сек, помимо ГИН, иногда используют испытательные высоковольтные трансформаторы, первичные обмотки которых питаются от конденсаторных батарей. Для получения импульсов с более крутым фронтом применяют специальный конденсатор, заряжаемый от ГИН и разряжающийся через дополнительный искровой «обостряющий» промежуток.
Импульсы с длительностью фронта ~ 10-9сек и полной длительностью ~ 10-8—10-7сек при амплитуде 104—106в получают от генераторов наносекундных импульсов. Схема одного из них отличается от рис. 1 заменой конденсаторов отрезками коаксиального кабеля (обладающего распределённой ёмкостью) и отсутствием сопротивлений Rд и Rф. Наносекундные импульсы получают также с помощью отрезков коаксиального кабеля, соединённых по схеме рис. 2; отрезка трёхполосной полосковой линии (схема Блюмлейна, рис. 3), полосковой линии, свёрнутой в спираль (спиральный генератор, рис. 4) и др. В последних двух генераторах происходит удвоение (рис. 3) или умножение (рис. 4) напряжения после пробоя искрового промежутка П и отражения волны напряжения от конца линии. Если к форме импульса напряжения не предъявляются специальные требования, то для получения импульсов с амплитудой ~ 104—105в применяют импульсные трансформаторы (катушки Румкорфа, трансформатор Тесла и др.).
Амплитуды импульсов измеряются с помощью специальных ёмкостных, омических или смешанных делителей напряжения.
Импульсы сильных токов применяются: 1) для создания импульсных магнитных полей в термоядерных установках, ускорителях заряженных частиц, при ускорении плазмы, и металлических тел, при магнитно-импульсной обработке металлов, в быстродействующих электромагнитных клапанах, импульсном электроприводе и т. д.); 2) для быстрого нагрева газа и проводников (нагрев газа при аэродинамических и термоядерных исследованиях, получение мощных ударных волн и расходящихся потоков жидкости для эхолокации и сейсморазведки, деформирование и разрушение материалов, электрический взрыв проводников, питание импульсных источников света, электроэрозионная обработка металлов, импульсная сварка и др., см. Электрофизические и электрохимические методы обработки); 3) для испытания электротехнических устройств, коммутационной аппаратуры, моделирования разрушающего действия тока молнии и т. д.
Источниками импульсов тока служат: ударные электрические генераторы, накапливающие энергию до 108дж в виде кинетической энергии массивного ротора (см. Генератор электромашинный); аккумуляторы, конденсаторные батареи (ёмкостные накопители), заряжаемые от источника постоянного напряжения (например, контур Горева); индуктивные накопители (накопление энергии происходит в катушке индуктивности); взрывные генераторы, в которых происходит уменьшение объёма контура или катушки с током при взрыве или под действием магнитного поля (рис. 5).
Похожие книги на "Большая Советская Энциклопедия (ИМ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.