Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ"
Законы сохранения и свойства фотонов в значит, степени определяют специфические черты Э. в. Так, равенство нулю массы покоя фотона обусловливает дальнодействующий характер Э. в. между заряженными частицами, а его отрицательная зарядовая чётность — возможность радиационного распада абсолютно нейтральных частиц или связанных систем частиц [т. е. частиц (систем), тождественных своим античастицам ], обладающих положит. зарядовой чётностью, — p -мезона, парапозитрония (см. Позитроний ) лишь на чётное число фотонов. Возможность описания (в соответствующем пределе) Э. в. в рамках классической (а не только квантовой) физики и его макроскопические проявления обусловлены дальнодействующим характером Э. в. и тем, что фотоны подчиняются Бозе — Эйнштейна статистике . Малая величина се определяет малость сечений электромагнитных процессов с участием адронов по сравнению с сечениями аналогичных процессов, протекающих за счёт сильных взаимодействий; например, сечение рассеяния фотона с энергией 320 Мэв на протоне составляет около 2×10-30см2, что примерно в 105 раз меньше сечения рассеяния p+ -мезона на протоне при соответствующей полной энергии сталкивающихся частиц в системе их центра масс.
Тот факт, что электрический заряд определяет «силу» взаимодействия и в то же время является сохраняющейся величиной — уникальное свойство Э. в.; вследствие этого Э. в. зависят только от электрического заряда частиц и не зависят от типа частиц или электромагнитных процессов. При описании электромагнитного поля 4-мерным вектором-потенциалом А m(m=®0,1,2,3) [А (j, А ), А — векторный, j — скалярный потенциалы] плотность лагранжиана L Э. в. поля с зарядом записывается в виде скалярного произведения:

где: jm — 4-мерный вектор плотности электрического тока: j = (c r, j ), j — плотность тока, r — плотность заряда. При градиентном преобразовании вектор-потенциала, которое называется также калибровочным преобразованием (2-го рода):
А ® А + grad f (х, t ),

где jm (x, t ) — произвольная функция координат х и времени t, наблюдаемые физические величины (напряжённости полей, вероятности электромагнитных процессов и т. п.) остаются неизменными. Это свойство, специфическое для Э. в., получило название принципа калибровочной инвариантности — одного из принципов симметрии в природе (см. Симметрии в физике), выражающего в наиболее общей форме факт существования электромагнитного поля (фотона) и Э. в. Обобщение калибровочной инвариантности на слабые взаимодействия позволило сформулировать единую теорию слабых и электромагнитных взаимодействий лептонов (см. Слабые взаимодействия ).
Эффекты квантовой электродинамики . К ним относятся рассеяние фотонов на электронах (Комптона эффект ), тормозное излучение , фоторождение пар е+ е- или m+ m- на кулоновском поле ядер, сдвиг уровней энергии атомов из-за поляризации электрон-позитронного вакуума (см. Вакуум физический) и другие эффекты, в которых можно пренебречь структурой заряда (его отличием от точечности) при взаимодействии с ним электромагнитного поля. Развитая для описания атомных явлений квантовая электродинамика оказалась справедливой для значительно меньших, чем атомные, расстояний. Изучение рассеяния электронов друг на друге и аннигиляции е+ +е- ® m+ +m- при больших энергиях сталкивающихся частиц (до ~ 6 Гэв в системе центра масс), фоторождения пар е+ +е- , m+ +m- с большими относительными импульсами, а также прецизионные измерения уровней энергии электронов в атомах и аномальных магнитных моментов электрона и мюона установили справедливость квантовой электродинамики вплоть до очень малых расстояний: ~ 10-15см. Её предсказания с высокой степенью точности согласуются с экспериментальными данными. Так, не найдено расхождения между теоретическим и экспериментальным значениями магнитного момента мюона на уровне 10-7 %.
Характерной чертой электродинамических процессов при высоких энергиях Е (Е >> mc2, где m — масса электрона или мюона) является острая направленность вперёд угловых распределений частиц (g, е± , m± ) — продуктов процессов: бо'льшая их часть вылетает в пределах угла J £ mc2/E относительно направления налетающих частиц.
Основной вычислительный метод квантовой электродинамики — теория возмущений: благодаря слабости Э. в. матрицу рассеяния процессов с участием электромагнитного поля можно разложить в ряд по степеням малого параметра a и при вычислениях ограничиться рассмотрением небольшого числа первых членов этого ряда (обычно не более четырёх).
В диаграммной технике теории возмущений (см. Фейнмана диаграммы ) простейший процесс квантовой электродинамики — взаимодействие фотона с бесструктурной (точечной) заряженной частицей входит как составной элемент в любой электродинамический процесс. Из-за малости a процессы с участием большого числа таких взаимодействий менее вероятны. Однако они доступны наблюдению и проявляются в т. н. радиационных поправках , в эффектах поляризации электрон-позитронного вакуума, в многофотонных процессах . В частности, поляризация вакуума приводит к рассеянию света на свете (рис. 1 , а) — эффекту, который отсутствует в классической электродинамике; этот эффект наблюдается при рассеянии фотонов на кулоновском поле тяжёлого ядра (рис. 1 , б).
В характере Э. в. для электронов (позитронов) и для мюонов не обнаружено отличия несмотря на значит, разницу в их массах; это легло в основу т. н. m-е-универсальности, пока не получившей теоретического объяснения.
Э. в. адронов и атомных ядер. В электромагнитных процессах с участием адронов (фоторождении мезонов, рассеянии электронов и мюонов на протонах и ядрах, аннигиляции пары е+ е- в адроны и др.) один из объектов взаимодействия — электромагнитное поле — хорошо изучен. Это делает Э. в. исключительно эффективным инструментом исследования строения адронов и природы сильных взаимодействий.
Сильные взаимодействия, как уже упоминалось, играют важную роль в электромагнитных процессах с участием адронов. Так, резонансные состояния адронов (резонансы ) могут возбуждаться фотонами и ярко проявляются, например, в полных сечениях поглощения фотонов протонами с образованием адронов (рис. 2 ). Электромагнитные свойства и электромагнитная структура адронов (магнитные моменты, поляризуемости, распределения зарядов и токов) обусловлены «облаком» виртуальных частиц (преимущественно p-мезонов), испускаемых адронами. Например, среднеквадратичный радиус распределения заряда в протоне определяется размерами этого «облака» и составляет ~0,8×10-13см (см. Формфактор ). Вместе со слабыми взаимодействиями Э. в. ответственны за различие масс заряженных и нейтральных частиц в изотопических мультиплетах (например, n и р, p и p± ). Короткодействующий характер сильных взаимодействий определяет при энергиях

Похожие книги на "Большая Советская Энциклопедия (ЭЛ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.