Большая Советская Энциклопедия (МИ) - Большая Советская Энциклопедия "БСЭ"
Лит.: Костюк П. Г., Микроэлектродная техника, К., 1960; Glass microelectrodes, N. Y., 1969.
О. З. Бомштейн.
Микроэлектромашина
Микроэлектромаши'на, электрическая машина мощностью от долей вт до нескольких сотен вт, с частотой вращения вала (ротора) до 30 000 об/мин. Различают М. постоянного и переменного тока и универсальные. М. могут иметь различное конструктивное исполнение в зависимости от назначения и условий их эксплуатации. В устройствах автоматики, в кино-, фото- и радиоаппаратуре широко применяют микропривод , а в системах с элементами обратной связи — тахогенераторы , которые используются также в дифференциаторах и интеграторах. В системах синхронизации применяют реактивные электродвигатели с сосредоточенной статорной обмоткой и сельсины ; в гироскопах и радиолокационных установках, а также в системах следящего электропривода широко распространены индукторные генераторы . Шаговые электродвигатели чаще всего применяют для привода механизмов, имеющих стартстопное движение, или механизмов с непрерывным движением, в которых управляющее воздействие задаётся последовательностью электрических импульсов, например в приводах станков с программным управлением и т. д. В бытовых электроприборах используют универсальные коллекторные электродвигатели.
Лит.: Армейский Е. В., Фалк Г. Б., Электрические микромашины, М., 1968; Брускин Д. Э., Зорохович А. Е., Хвостов В. С., Электрические машины и микромашины, М., 1971.
Ю. М. Иньков.
Микроэлектроника
Микроэлектро'ника, область электроники , занимающаяся созданием электронных функциональных узлов, блоков и устройств в микроминиатюрном интегральном исполнении. Возникновение М. в начале 60-х гг. 20 в. было вызвано непрерывным усложнением функций электронной аппаратуры, увеличением габаритов и повышением требований к её надёжности. Применение в отдельных устройствах нескольких тысяч и десятков тысяч самостоятельно изготовленных электронных ламп, транзисторов, конденсаторов, резисторов, трансформаторов и др., сборка их путём соединения выводов пайкой или сваркой делали аппаратуру громоздкой, трудоёмкой в изготовлении, недостаточно надёжной в работе, требующей значительного потребления электроэнергии и т. д. Поиски путей устранения этих недостатков привели к появлению новых конструктивно-технологических направлений создания электронной аппаратуры: печатного монтажа , модулей и микромодулей , а затем и интегральных схем (на базе групповых методов изготовления).
Используя достижения в области физики твёрдого тела и особенно физики полупроводников , М. решает указанные проблемы не путём простого уменьшения габаритов электронных элементов, а созданием конструктивно, технологически и электрически связанных электронных структур — функциональных блоков и узлов. В них согласно принципиальной схеме конструктивно объединено большое число микроминиатюрных элементов и их электрических соединений, изготавливаемых в едином технологическом процессе. Такой процесс, ставший возможным благодаря предложенному в 1959 планарному процессу получения полупроводниковых (ПП) приборов, предполагает применение исходной общей заготовки (обычно в виде пластины из ПП материала) для большого числа (~ 100—2000) одинаковых электронных функциональных узлов, одновременно проходящих последовательный ряд технологических операций в идентичных условиях (рис. 1 ). Т. о., каждый такой узел получают не в результате сборки из дискретных элементов, а в итоге поэтапной групповой интегральной обработки многих одинаковых узлов на одной пластине. В процессе обработки отдельным участкам ПП материала придаются свойства различных элементов и их соединений, в целом образующих изготавливаемый узел. Полученный микроминиатюрный узел, отделённый от пластины и помещенный в корпус, называется интегральной микросхемой, или интегральной схемой (ИС). В связи с этим в М. изменяется само понятие элемента. Практически элементом становится ИС как неделимое изделие, состоящее из 5 элементов и более. ИС характеризуется уровнем интеграции — числом простейших элементов в ней.
В силу специфики — исключительно высокой точности проведения технологических процессов и большого числа операций — для изготовления микроэлектронных изделий требуются разнообразные высококачественные ПП и другие материалы и прецизионное технологическое оборудование. Базовым ПП материалом служит монокристаллический кремний. Технологическое оборудование должно обеспечить изготовление элементов ИС с точностью их размеров в пределах единиц и долей микрометра.
В соответствии с используемыми конструктивно-технологическими и физическими принципами в М. может быть выделено несколько взаимно перекрывающихся и дополняющих друг друга направлений: интегральная электроника , вакуумная микроэлектроника, оптоэлектроника и функциональная электроника . Наибольшее развитие получила интегральная электроника. С её появлением открылись широкие возможности микроминиатюризации радиоэлектронной аппаратуры, начался процесс создания аппаратуры третьего поколения — с применением ИС (первое поколение — на электровакуумных приборах, второе — на ПП приборах). Область применения ИС простирается от вычислительной техники и космических систем до бытовой аппаратуры. Темпы роста производства ИС исключительно высоки. Мировая промышленность в 1972 выпустила более 1 млрд. ИС.
На базе групповых методов изготовления, путём формирования необходимого количества электронных элементов и электрических связей между ними в объёме одного ПП кристалла были впервые созданы (1959—61) полупроводниковые ИС. В их производстве наиболее распространена планарно-эпитаксиальная технология, заимствованная из производства дискретных ПП приборов (см. Полупроводниковая электроника ) и отличающаяся от него лишь дополнительными операциями по электрической изоляции отдельных элементов на ПП пластине и соединению всех элементов в кристалле в единый функциональный узел. Для изоляции используются методы создания вокруг элемента области ПП материала с противоположным типом проводимости (при этом образуется изолирующий р-n -переход, см. Электронно-дырочный переход ) или слоя диэлектрика, например двуокиси кремния. Основные технологические операции планарно-эпитаксиальной технологии: механическая и химическая обработка ПП пластин; эпитаксиальное наращивание на пластине слоя с необходимыми электрофизическими свойствами (типом проводимости, удельным сопротивлением и т. д.); фотолитография ; легирование (например, посредством диффузии или ионного внедрения ); нанесение металлических плёнок — электродов, соединительных дорожек, контактных площадок (рис. 2 ).
Из всех перечисленных этапов технологического процесса наиболее ответственным является фотолитография. Она обеспечивает проведение избирательной обработки отдельных участков ПП пластины, например вытравливание «окон» в окисной плёнке на пластине для проведения диффузии примесей. В этом процессе используется светочувствительный лак — фоторезист . Плёнка фоторезиста, нанесённая на ПП пластину, облучается ультрафиолетовым светом через приложенную плотно к пластине фотомаску — т. н. фотошаблон, который представляет собой стеклянную пластинку с выполненным на ней повторяющимся рисунком, образованным непрозрачными и полупрозрачными участками (чаще всего слоя хрома). После облучения плёнка фоторезиста подвергается селективному травлению, в результате чего на ПП пластине воспроизводится рисунок фотошаблона. Экспонирование фоторезиста проводится также и бесконтактным способом: проецированием рисунка на пластину. Перспективен метод экспонирования заданного рисунка электронным лучом (электронолитография).
Похожие книги на "Большая Советская Энциклопедия (МИ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.