Большая Советская Энциклопедия (ВЗ) - Большая Советская Энциклопедия "БСЭ"
В. химических взрывчатых веществ применяют как одно из основных средств разрушения. Огромной разрушающей способностью обладают ядерные взрывы. В. одной ядерной бомбы может быть эквивалентен по энергии В. десятков млн. т химического взрывчатого вещества.
В. нашли широкое мирное применение в научных исследованиях и в промышленности. В. позволили достигнуть значительного прогресса в изучении свойств газов, жидкостей и твёрдых тел при высоких давлениях и температурах (см. Давление высокое ). Исследование В. играет важную роль в развитии физики неравновесных процессов, изучающей явления переноса массы, импульса и энергии в различных средах, механизмы фазовых переходов вещества, кинетику химических реакций и т.п. Под воздействием В. могут быть достигнуты такие состояния веществ, которые оказываются недоступными при др. способах исследования. Мощное сжатие канала электрического разряда посредством В. химического взрывчатого вещества даёт возможность получать в течение короткого промежутка времени магнитные поля огромной напряжённости [до 1,1 Га/м (до 14 млн. э ), см. Магнитное поле ]. Интенсивное испускание света при В. химического взрывчатого вещества в газе может использоваться для возбуждения оптического квантового генератора (лазера). Под действием высокого давления, которое создаётся при детонации взрывчатого вещества, осуществляются взрывное штампование , взрывная сварка и взрывное упрочнение металлов .
Экспериментальное изучение В. состоит в измерении скоростей распространения взрывных волн и скоростей перемещения вещества, измерении быстро изменяющегося давления, распределений плотности, интенсивности и спектрального состава электромагнитного и др. видов излучения, испускаемого при В. Эти данные позволяют получить сведения о скорости протекания различных процессов, сопровождающих В., и определить общее количество освобождающейся энергии. Давление и плотность вещества в ударной волне связаны определёнными соотношениями со скоростью движения ударной волны и скоростью перемещения вещества. Это обстоятельство позволяет, например, на основании измерений скоростей вычислить давления и плотности в тех случаях, когда их непосредственное измерение оказывается по какой-либо причине недоступным. Для измерений основных параметров, характеризующих состояние и скорость перемещения среды, применяются различные датчики, преобразующие определенный вид воздействия в электрический сигнал, который записывается при помощи осциллографа или др. регистрирующего прибора. Современная электронная аппаратура позволяет регистрировать явления, происходящие в течение интервалов времени ~ 10-11сек . Измерения интенсивности и спектрального состава светового излучения при помощи специальных фотоэлементов и спектрографов служат источником информации о температуре вещества. Широкое применение для регистрации явлений, сопровождающих В., имеет скоростная фотосъёмка, которая может производиться со скоростью, достигающей 109 кадров в 1 сек .
В лабораторных исследованиях ударных волн в газах часто используется специальное устройство — ударная труба (см. Аэродинамическая труба ). Ударная волна в такой трубе создаётся в результате быстрого разрушения мембраны, разделяющей газ с высоким и низким давлением (такой процесс можно рассматривать как наиболее простой вид В.). При исследовании волн в ударных трубах эффективно применяются интерферометры и полутеневые оптические установки, действие которых основано на изменении показателя преломления газа вследствие изменения его плотности.
Взрывные волны, распространяющиеся на большие расстояния от места их возникновения, служат источником информации о строении атмосферы и внутренних слоёв Земли. Волны на очень больших расстояниях от места В. регистрируются высокочувствительной аппаратурой, позволяющей фиксировать колебания давления в воздухе до 10-6 атмосферы (0,1 н/м2 ) или перемещения почвы ~ 10-9 м .
В. широко применяют при разведке полезных ископаемых. Отражённые от различных слоев сейсмические волны (упругие волны в земной коре) регистрируются сейсмографами. Анализ сейсмограмм даёт возможность сделать заключение о залегании нефти, природного газа и др. полезных ископаемых. В. столь же широко используют при вскрытии и разработке месторождений полезных ископаемых. Без взрывных работ не обходится практически ни одно строительство плотин, дорог и тоннелей в горах (подробнее см. Взрывные работы ).
Лит.: Садовский М. А., Механическое действие воздушных ударных волн взрыва по данным экспериментальных исследований, в сб.: Физика взрыва, № 1, М., 1952; Баум Ф. А., Станюкович К. П. и Шехтер Б. И., Физика взрыва, М., 1959; Андреев К. К. и Беляев А. Ф., Теория взрывчатых веществ, М., 1960: Покровский Г. И., Взрыв, М., 1964; Ляхов Г. М., Основы динамики взрыва в грунтах и жидких средах, М., 1964; Докучаев М. М., Родионов В. Н., Ромашов А. Н., Взрыв на выброс, М., 1963: Коул Р., Подводные взрывы, пер. с англ., М., 1950; Подземные ядерные взрывы, пер. с англ., М., 1962; Действие ядерного оружия, пер. с англ., М., 1960; Горбацкий В. Г., Космические взрывы, М., 1967; Дубовик А. С., Фотографическая регистрация быстропротекающих процессов, М., 1964.
К. Е. Губкин.
Взрыватели
Взрыва'тели, трубки, механизмы, предназначенные для возбуждения детонации (взрыва) зарядов боеприпасов (снаряда, мины, бомбы и др.) при встрече с целью, в районе цели или в требуемой точке траектории полёта.
По принципу определения момента срабатывания В. подразделяются на ударные В. (срабатывают от удара боеприпаса в преграду, рис. 1 , 3 ); дистанционные В. (или трубки) — пиротехнические (рис. 2 ), механические и электрические (срабатывают на траектории через заданный промежуток времени после выстрела, пуска ракеты, сбрасывания бомбы); неконтактные В. — радиолокационные, инфракрасные, оптические, ёмкостные, акустические, барометрические, вибрационные (срабатывают без контакта с целью на оптимальном расстоянии от неё); исполнительные В. (срабатывают при получении кодированного внешнего сигнала с базы).
Общим в устройстве В. является: наличие детонационной цепи (совокупности элементов, обеспечивающих возбуждение детонации разрывного заряда); исполнительных механизмов (ударников с жалом, электроконтактов, тёрок, поршней и др.), вызывающих воспламенение или взрыв капсюлей-воспламенителей или капсюлей-детонаторов; предохранительных механизмов (пружин, мембран, колпачков, ветрянок, движков, шариков, чек и др.), обеспечивающих безопасность В. в служебном обращении, при выстреле и на траектории. Возбуждение детонации В. осуществляется механически (капсюль-воспламенитель или капсюль-детонатор срабатывает за счёт кинетической энергии ударника или работы силы трения при выдёргивании тёрки — так называемые фрикционные В., рис. 1—4 ); при помощи электричества (электровоспламенитель или электродетонатор срабатывает посредством электрического импульса); химическим путём (вылившийся из разбитой ампулы реагент воспламеняет горючий состав).
По времени замедления от момента встречи с целью (преградой) до взрыва различают ударные В. мгновенного и замедленного действия. В артиллерийских и авиационных В. мгновенное действие достигается свинчиванием предохранительного колпачка перед стрельбой (рис. 1 и 2 ) или свинчиванием его на полёте с помощью ветрянки (рис. 3 ). Во В. инженерных мин мгновенное действие обеспечивается при помощи нажимных, натяжных, обрывнонатяжных и разгрузочных устройств (рис. 4 ). Замедленное действие В. осуществляется включением в детонационную цепь замедлителя (в артиллерийских ударных В.), установкой часового механизма или химического реагента (в инженерных минах и авиационных бомбах). Артиллерийские В. имеют установку на фугасное (инерционное) действие (рис. 1 ), обеспечивающую взрыв снаряда после значительного углубления в преграду. Ударные В. с постоянным замедлением (самоликвидатором) позволяют взрывать снаряд в случае промаха по цели. В. по месту их соединения с боеприпасом делят на головные (в осколочных, фугасных, осколочно-фугасных, кумулятивных и др. снарядах, минах, бомбах), донные (в бронебойных, бетонобойных, фугасных снарядах и бомбах), голово-донные (в кумулятивных снарядах и минах), боковые (в авиационных бомбах). Некоторые боеприпасы имеют несколько В. для обеспечения безотказности действия. В., у которых капсюль-детонатор отделен от детонатора, называются В. предохранительного типа; В., у которых капсюль-воспламенитель отделен от капсюля-детонатора, — полупредохранительного типа. Наличие изоляции повышает безопасность В. в случае преждевременного срабатывания капсюля-воспламенителя или капсюля-детонатора. Совершенствование В. идёт в направлении повышения эффективности действия, надёжности, безопасности боеприпасов.
Похожие книги на "Большая Советская Энциклопедия (ВЗ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.