Большая Советская Энциклопедия (ЛИ) - Большая Советская Энциклопедия "БСЭ"
Лит.: Юдин Д. Б., Гольштейн Е. Г., Линейное программирование, М., 1969.
В. Г. Карманов.
Линейное пространство
Лине'йное простра'нство, тоже, что векторное пространство. В функциональном анализе рассматриваются главным образом бесконечномерные пространства. Примером бесконечномерного Л. п. может служить пространство всех многочленов (с вещественными или комплексными коэффициентами) при обычном определении сложения и умножения на числа. Одним из первых примеров бесконечного Л. п. были гильбертово пространствои пространство С [а, b] непрерывных функций, заданных на отрезке [а, b]. Эти пространства являются нормированными, т. е. такими Л. п., в которых введена норма элемента х — неотрицательное число




В конечномерном пространстве различные нормы топологически равносильны: последовательность точек, сходящихся при одной норме, сходится и при любой другой. В бесконечномерных пространствах нормы могут быть существенно различны. Например, при решении задачи П. Л. Чебышева о разыскании многочлена, наименее уклоняющегося от нуля (задачи о наилучшем приближении), надо найти такой многочлен (k — 1)-й степени Pk-i(t), чтобы


имел наименьшее значение. Вводя в пространство С[0,1] норму формулой



эту задачу можно сформулировать следующим образом: требуется найти многочлен Pk-i(t), расстояние которого от функции t* было бы наименьшим. При рассмотрении же многочленов, ортогональных с весом p(t) (см. Ортогональная система функций), естественно рассматривать норму, определённую формулой

и решать задачу о наилучшем приближении в смысле этой нормы. Нормы



по первой норме расходится, а по второй норме при p(t) = 1 сходится к функции

Следует отметить, что хотя все функции xn(t) были непрерывны, функция x(t) разрывна. Это связано с тем, что пространство непрерывных функций неполно относительно нормы


существует в Л. п. такой элемент х, что данная последовательность сходится к нему, т. е.

Если Л. п. неполно, то к нему можно присоединить новые элементы (пополнить его) так, что оно станет полным. Например, пополняя пространство непрерывных функций, взятое с нормой

Обобщением понятия B-пространства является понятие топологического Л. п. Так, называют множество Е, если: 1) оно представляет собой Л. п., 2) оно является топологическим пространством, 3) операции сложения и умножения на числа в Е непрерывны относительно заданной в Е топологии. К числу топологического Л. п. относятся все нормированные пространства. А. Н. Колмогоров установил (1934) необходимые и достаточные условия нормируемости топологического Л. п.
Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965.
Линейное судоходство
Лине'йное судохо'дство, см. Морские линии.
Линейное уравнение
Лине'йное уравне'ние, уравнение, в которое неизвестные входят в 1-й степени (т. е. линейно) и отсутствуют члены, содержащие произведения неизвестных. Несколько Л. у. относительно одних и тех же неизвестных образуют систему Л. у. Решением системы Л. у. называют набор чисел c1, c2, ..., cn, обращающих все уравнения в тождества после подстановки их вместо соответствующих неизвестных. Система Л. у. может иметь как одно единственное решение, так и бесконечное множество решений (неопределённая система); может также оказаться, что система Л. у. не имеет ни одного решения (несовместная система).
Чаще всего встречается случай, когда число уравнений совпадает с числом неизвестных. Одно Л. у. с одним неизвестным имеет вид:
ax = b;
решением его при а ¹ 0 будет число b/a. Система двух Л. у. с двумя неизвестными имеет вид:

где a11, a12, a21, a22, b1, b2— какие-либо числа. Решение системы (1) можно получить с помощью определителей:


здесь предполагается, что стоящий в знаменателе определитель

Аналогичное правило применимо и при решении любой системы и Л. у. с n неизвестными, т. е. системы вида:

здесь aij и bi (i, j = 1, 2, ..., n) — произвольные числовые коэффициенты; числа b1, b2, ..., bn называют обычно свободными членами. Если определитель D = ½aij½ системы (2), составленный из коэффициентов aij при неизвестных, отличен от нуля, то решение получается следующим образом: k-e (k = 1, 2, ..., n) неизвестное xk равно дроби, в знаменателе которой стоит определитель D, а в числителе — определитель, полученный из D заменой в нём столбца из коэффициентов при отыскиваемом неизвестном (к-го столбца) столбцом свободных членов b1, b2, ..., bn. Если D = 0, то система (2) либо не имеет ни одного решения, либо имеет бесконечное множество решений.
Похожие книги на "Большая Советская Энциклопедия (ЛИ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.