Большая Советская Энциклопедия (СТ) - Большая Советская Энциклопедия "БСЭ"
и выборочная медиана m = m(X1 ,..., Xn ) являются возможными точечными С. о. неизвестного параметра а . В качестве С. о. какого-либо параметра q естественно выбрать функцию q* (X1 ,..., Xn ) от результатов наблюдений X1 ,..., Xn , в некотором смысле близкую к истинному значению параметра. Принимая какую-либо меру «близости» С. о. к значению оцениваемого параметра, можно сравнивать различные оценки по качеству. Обычно мерой близости оценки к истинному значению параметра служит величина среднего значения квадрата ошибки
(выражающаяся через математическое ожидание оценки E q* и её дисперсию D q*). В классе всех несмещённых оценок (для которых E q* = 0) наилучшими с этой точки зрения будут оценки, имеющие при заданном n минимальную возможную дисперсию при всех q. Указанная выше оценка Х для параметра а нормального распределения является наилучшей несмещенной оценкой, поскольку дисперсия любой другой несмещенной оценки а* параметра а удовлетворяет неравенству
(тем не менее использование m имеет также положительные стороны: например, если истинное распределение не является в точности нормальным, а несколько отличается от него, дисперсия Х может резко возрасти, а дисперсия m остаётся почти той же, т. е. m обладает свойством, называется «прочностью»). Одним из распространённых общих методов получения С. о. является метод моментов, который заключается в приравнивании определённого числа выборочных моментов к соответствующим моментам теоретического распределения, которые суть функции от неизвестных параметров, и решении полученных уравнений относительно этих параметров. Хотя метод моментов удобен в практическом отношении, однако С. о., найденные при его использовании, вообще говоря, не являются асимптотически наилучшими, Более важным с теоретической точки зрения представляется максимального правдоподобия метод , который приводит к оценкам, при некоторых общих условиях асимптотически наилучшим. Частным случаем последнего является наименьших квадратов метод . Метод С. о. существенно дополняется оцениванием с помощью доверительных границ .
Лит.: Кендалл М., Стьюарт А., Статистические выводы и связи, пер. с англ., М., 1973; Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975.
А. В. Прохоров.
Статистические расчёты
Статисти'ческие расчёты, исчисление на основе имеющихся статистических данных новых показателей, расширяющих и обогащающих возможности анализа и познания социально-экономических явлений и процессов. С. р. можно подразделить на 2 группы: расчёты отдельных показателей и комплексные расчёты систем показателей. К первой группе относятся: расчёты относительных показателей (например, показателей выполнения плана, структуры совокупности, соотношения отдельных её частей, динамики, сравнения и интенсивности развития); расчёты средних величин (например, средней заработной платы, средней выработки на одного работающего, средней урожайности и т.п.); исчисление отдельных статистических характеристик (например, средней ошибки выборки, дисперсии , вариационных коэффициентов ), расчёты статистических индексов ; расчёты недостающих показателей на основе балансовых уравнений, интерполяции в рядах динамики ; расчёты сводных показателей в социально-экономической статистике (например, совокупного общественного продукта , национального дохода и др.). Вторую группу составляют комплексные С. р., воссоздающие какой-либо процесс или состояние социально-экономического явления. В них применяются методы статистических группировок , построение индексных систем, теория корреляции и др. статистические приёмы анализа. Непревзойдённые примеры глубоко научных С. р. содержатся в трудах В. И. Ленина. В работе «Развитие капитализма в России» на основе массового статистического материала, собранного земской статистикой и научно обработанного Лениным с помощью метода группировок, доказано развитие капитализма в России: в пореформенной русской деревне происходил процесс классовой дифференциации, выделялись 3 различных социально-экономических типа крестьянских хозяйств: пролетарское и полупролетарское, живущие главным образом или наполовину продажей рабочей силы; середняцкие, источник существования которых — собственное мелкое хозяйство, и зажиточные, эксплуатирующие наёмных рабочих. По расчётам В. И. Ленина, удельный вес этих типов крестьянских хозяйств в конце 19 в. в России составлял соответственно 50, 30 и 20%. В этой же работе дан классический пример С. р. социальной структуры населения России по материалам переписи населения в 1897 с использованием данных переписи населения 1890 в Петербурге и материалов земской статистики. В. И. Ленин установил, что численность пролетариата в России в 1897 составляла «... не менее 22-х миллионов» (Полн. собр. соч., 5 изд., т. 3, с. 505, прим.). В социалистическом хозяйстве С. р. находят применение в балансовых работах (см. Балансовый метод в планировании , Балансовый метод в статистике ), прежде всего в расчётах, связанных с построением баланса народного хозяйства СССР , баланса основных фондов , финансового баланса, баланса трудовых ресурсов , баланса межотраслевого производства и распределения общественного продукта; при сопоставлении показателей между странами в международных сравнениях; при исчислении различных сводных показателей и коэффициентов и т.д. Большую группу составляют С. р. по прогнозированию численности населения и др. показателей социально-экономической статистики на длительный период времени. Следует назвать также расчёты по распространению на генеральную совокупность результатов выборочного наблюдения и оценки их достоверности, Примером С. р. может служить математическая обработка данных межотраслевого баланса народного хозяйства. Для производства комплексных С. р. применяются экономико-математические методы и электронно-вычислительные машины.
Лит.: Эйдельман М Р Межотраслевой баланс общественного продукта, М.,1966: Курс экономической статистики, под ред. А. И. Петрова, 4 изд., М., 1967; Курс демографии, под ред. А. Я. Боярского, М., 1967; Ряузов Н. Н., Общая теория статистики, 2. изд., м., 1971.
Похожие книги на "Большая Советская Энциклопедия (СТ)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.