Большая Советская Энциклопедия (ВА) - Большая Советская Энциклопедия "БСЭ"
Л. Н. Большев.
Вариационное исчисление
Вариацио'нное исчисление, математическая дисциплина, посвященная отысканию экстремальных (наибольших и наименьших) значений функционалов — переменных величин, зависящих от выбора одной или нескольких функций. В. и. является естественным развитием той главы математического анализа, которая посвящена задаче отыскания экстремумов функций. Возникновение и развитие В. и. тесно связано с задачами механики, физики и т.д.
Одной из первых задач В. и. была знаменитая задача о брахистохроне (И. Бернулли, 1696): определить форму кривой, лежащей в вертикальной плоскости, по которой тяжёлая материальная точка, двигаясь под действием только одной силы тяжести и не имеющая начальной скорости, перейдёт из верхнего положения А в нижнее положение В за минимум времени. Эта задача сводится к отысканию функции у (х ), доставляющей минимум функционалу

где а и b — абсциссы точек А и В.
Другой такой же «исторической» задачей является задача об отыскании пути, вдоль которого распространяется свет, идущий от источника света (точка А ) к некоторой точке В, в среде с переменной оптической плотностью (то есть в среде, где скорость распространения v есть функция координат). Для решения этой задачи может быть использован, так называемый, Ферма принцип , согласно которому из всех кривых, соединяющих точки А и В, луч света распространяется вдоль той, по которой свет приходит из A в B за кратчайшее время. В простейшем случае, когда свет распространяется в плоскости, задача сводится к отысканию кривой y (x ), доставляющей минимум функционалу

Из разрозненных задач подобного рода постепенно в 18 в. начало формироваться В. и. Но и после оформления В. и. в самостоятельную дисциплину она продолжала оставаться связанной с различными проблемами механики и физики. На протяжении 2-й половины 18 в. и всего 19 в. делались интенсивные попытки построить здание механики, опираясь на некоторые общие вариационные принципы (см. Вариационные принципы механики ). Со 2-й половины 19 в. начинают разрабатываться различные вариационные принципы в механике сплошных сред, затем позднее в квантовой механике, электродинамике и т.д. Возникают вариационные принципы и в средах с диссипацией энергии. Исследования во всех подобных областях продолжают служить базой формирования новых задач В. и. и областью приложения её методов. Однако со временем появились и новые классы задач, далеко раздвинувших традиционные границы дисциплины и превративших В. и. в одну из наиболее обширных ветвей современной математики, включающей в себя, с одной стороны, самые абстрактные вопросы, относящиеся в равной степени к топологии и функциональному анализу, а с другой — разнообразные вычислительные методы решения технических или экономических задач.
Прямые методы . В. и. как самостоятельная научная дисциплина сформировалась в 18 в., главным образом благодаря работам Л. Эйлера .
Простейшей задачей В. и. называют задачу отыскания функции x (t ), доставляющей экстремум функционалу

где F — непрерывная и дифференцируемая функция своих аргументов. При этом функция x (t ) должна удовлетворять следующим условиям:
а) она должна быть кусочно дифференцируемой,
б) при t = to и t = T она должна принимать значения
х (to ) = х , х (Т) = хт . (2)
Обе задачи, рассмотренные в начале статьи, являются частными случаями простейшей задачи В. и.
Первые вариационные задачи были задачами механики. Они были поставлены в 18 в. и, следуя традициям того времени, первый вопрос, на который надо было ответить, был вопрос о способе фактического отыскания функции x (t ), реализующей минимум функционала (1).
Эйлер создал численный метод решения задач В. и., который получил название Эйлера метода ломаных . Этот метод был первым среди большого класса, так называемых, прямых методов ; все они основаны на редукции задачи отыскания экстремума функционала к задаче отыскания экстремума функции многих переменных. Поскольку для получения решения с высокой точностью задачу приходится сводить к отысканию экстремума функции с большим числом переменных, она становится весьма сложной для ручного счёта. Поэтому долгое время прямые методы были вне основного русла, по которому направлялись усилия математиков, занимавшихся В. и.
В 20 в. интерес к прямым методам значительно усилился. Прежде всего были предложены новые способы редукции к задаче об экстремуме функции конечного числа переменных. Поясним эти идеи на простом примере. Рассмотрим снова задачу отыскания минимума функционала (1) при дополнит. условии
x (to ) = x (T) = 0 (3)
и будем разыскивать решение задачи в форме

где jn (t) — некоторая система функций, удовлетворяющих условиям типа (3). Тогда функционал J (x) становится функцией коэффициентов ai :
J = J (ai ,..., aN ),
и задача сводится к отысканию минимума этой функции N переменных. При известных условиях, наложенных на систему функций {jn } , решение этой задачи стремится при N ® ¥ к решению задачи (1) (см. Ритца и Галёркина методы ).
Другая причина усиления интереса к прямым методам — это систематическое изучение конечноразностных методов в задачах математической физики, начавшееся с 20-х гг. 20 в. Применение ЭВМ превращает постепенно прямые методы в основной инструмент решения вариационных задач.
Метод вариаций. Второе направление исследований — это изучение необходимых и достаточных условий, которым должна удовлетворять функция x (t ), реализующая экстремум функционала J (x). Его возникновение также связано с именем Эйлера. Предположим, что тем или иным способом построена функция x (t ). Как проверить, является ли эта функция решением задачи? Первый вариант ответа на этот вопрос был дан Эйлером в 1744. В приведённой ниже формулировке этого ответа употребляется введённое в 60-х гг. 18 в. Ж. Лагранжем понятие вариации (отсюда название — В. и.), являющееся обобщением понятия дифференциала на случай функционалов.
Пусть x (t ) — функция, удовлетворяющая условию (2), a h (t) — произвольная гладкая функция, удовлетворяющая условию h (to ) = h (T) = 0. Тогда величина
J (x + eh) = J*(e),
где e — произвольное действительное число будет функцией e . Вариацией dJ функционала J называют производную
(dJ*/de)e = 0.
Для простейшей задачи В. и.

Разлагая полученное выражение в ряд по степеням e, получим

где о (e) — члены более высокого порядка. Так как h (to ) = h (T ) = 0, то, проведя интегрирование по частям во втором интеграле, найдём
Похожие книги на "Большая Советская Энциклопедия (ВА)", Большая Советская Энциклопедия "БСЭ"
Большая Советская Энциклопедия "БСЭ" читать все книги автора по порядку
Большая Советская Энциклопедия "БСЭ" - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mir-knigi.info.